687
Views
120
CrossRef citations to date
0
Altmetric
Research Article

Bile acid transporters in health and disease

&
Pages 1043-1071 | Received 13 Jan 2008, Accepted 09 Mar 2008, Published online: 22 Sep 2008

References

  • Agellon LB, Torchia EC. Intracellular transport of bile acids. Biochimica et Biophysica Acta 2000; 1486(1)198–209
  • Alpini G, Glaser S, Baiocchi L, Francis H, Xia X, Lesage G. Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology 2005; 41(5)1037–1045
  • Alpini G, Glaser SS, Rodgers R, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, LeSage GD. Functional expression of the apical Na+-dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 1997; 113(5)1734–1740
  • Alrefai WA, Gill RK. Bile acid transporters: Structure, function, regulation and pathophysiological implications. Pharmaceutical Research 2007; 24(10)1803–1823
  • Alrefai WA, Sarwar Z, Tyagi S, Saksena S, Dudeja PK, Gill RK. Cholesterol modulates human intestinal sodium-dependent bile acid transporter. American Journal of Physiology and Gastrointestinal Liver Physiology 2005; 288(5)G978–G985
  • Ananthanarayanan M, Li S, Balasubramaniyan N, Suchy FJ, Walsh MJ. Ligand-dependent activation of the farnesoid X-receptor directs arginine methylation of histone H3 by CARM1. Journal of Biology and Chemistry 2004; 279(52)54348–54357
  • Ananthanarayanan M, Ng OC, Boyer JL, Suchy FJ. Characterization of cloned rat liver Na(+)-bile acid cotransporter using peptide and fusion protein antibodies. American Journal of Physiology 1994; 267(4 Pt 1)G637–G643
  • Anwer MS. Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology 2004; 39(3)581–590
  • Anwer MS, Gillin H, Mukhopadhyay S, Balasubramaniyan N, Suchy FJ, Ananthanarayanan M. Dephosphorylation of Ser-226 facilitates plasma membrane retention of Ntcp. Journal of Biology and Chemistry 2005; 280(39)33687–33692
  • Anwer MS, Hegner D. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 1978; 359(2)181–192
  • Arrese M. Cholestasis during pregnancy: Rare hepatic diseases unmasked by pregnancy. Annals of Hepatology 2006; 5(3)216–218
  • Arrese M, Trauner M, Sacchiero RJ, Crossman MW, Shneider BL. Neither intestinal sequestration of bile acids nor common bile duct ligation modulate the expression and function of the rat ileal bile acid transporter. Hepatology 1998; 28(4)1081–1087
  • Balistreri WF, Heubi JE, Suchy FJ. Bile acid metabolism: Relationship of bile acid malabsorption and diarrhea. Journal of Pediatric Gastroenterology and Nutrition 1983; 2(1)105–121
  • Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N. OSTalpha-OSTbeta: A major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 2005; 42(6)1270–1279
  • Banerjee A, Swaan PW. Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains. Biochemistry 2006; 45(3)943–953
  • Baringhaus KH, Matter H, Stengelin S, Kramer W. Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. II. A reliable 3D QSAR pharmacophore model for the ileal Na(+)/bile acid cotransporter. Journal of Lipid Research 1999; 40(12)2158–2168
  • Bear CE, Davison JS, Shaffer EA. Sodium-dependent taurocholate uptake by isolated rat hepatocytes occurs through an electrogenic mechanism. Biochimica et Biophysica Acta 1987; 903(2)388–394
  • Bezerra JA, Balistreri WF. The unique nature of the pediatric liver. Clinical Liver Disease 2000; 4(4)xi–xv
  • Bohme M, Muller M, Leier I, Jedlitschky G, Keppler D. Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt transport in rat liver. Gastroenterology 1994; 107(1)255–265
  • Botham KM, Suckling KE. The effect of dibutyryl cyclic AMP on the uptake of taurocholic acid by isolated rat liver cells. Biochimica et Biophysica Acta 1986; 883(1)26–32
  • Boulias K, Katrakili N, Bamberg K, Underhill P, Greenfield A, Talianidis I. Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. EMBO Journal 2005; 24(14)2624–2633
  • Bouscarel B, Kroll SD, Fromm H. Signal transduction and hepatocellular bile acid transport: Cross talk between bile acids and second messengers. Gastroenterology 1999; 117(2)433–452
  • Boyer JL, Soroka CJ. Vesicle targeting to the apical domain regulates bile excretory function in isolated rat hepatocyte couplets. Gastroenterology 1995; 109(5)1600–1611
  • Boyer JL, Trauner M, Mennone A, Soroka CJ, Cai SY, Moustafa T, Zollner G, Lee JY, Ballatori N. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. American Journal of Physiology and Gastrointestinal Liver Physiology 2006; 290(6)G1124–G1130
  • Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ. The human bile salt export pump: Characterization of substrate specificity and identification of inhibitors. Gastroenterology 2002; 123(5)1649–1658
  • Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nature Genetics 2003; 34(1)91–96
  • Cattori V, Eckhardt U, Hagenbuch B. Molecular cloning and functional characterization of two alternatively spliced Ntcp isoforms from mouse liver1. Biochimica et Biophysica Acta 1999; 1445(1)154–159
  • Chen F, Ma L, Al-Ansari N, Shneider B. The role of AP-1 in the transcriptional regulation of the rat apical sodium-dependent bile acid transporter. Journal of Biology and Chemistry 2001; 276(42)38703–38714
  • Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Breslow J, Ananthanarayanan M, Shneider BL. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. Journal of Biology and Chemistry 2003; 278(22)19909–19916
  • Chen F, Ma L, Sartor RB, Li F, Xiong H, Sun AQ, Shneider B. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation. Gastroenterology 2002; 123(6)2005–2016
  • Chen X, Chen F, Liu S, Glaeser H, Dawson PA, Hofmann AF, Kim RB, Shneider BL, Pang KS. Transactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1 alpha, 25-dihydroxyvitamin D3 via the vitamin D receptor. Molecular Pharmacology 2006; 69(6)1913–1923
  • Cheng X, Buckley D, Klaassen CD. Regulation of hepatic bile acid transporters Ntcp and Bsep expression. Biochemical Pharmacology 2007; 74(11)1665–1676
  • Childs S, Yeh RL, Georges E, Ling V. Identification of a sister gene to P-glycoprotein. Cancer Research 1995; 55(10)2029–2034
  • Childs S, Yeh RL, Hui D, Ling V. Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein. Cancer Research 1998; 58(18)4160–4167
  • Christie DM, Dawson PA, Thevananther S, Shneider BL. Comparative analysis of the ontogeny of a sodium-dependent bile acid transporter in rat kidney and ileum. American Journal of Physiology 1996; 271(2 Pt 1)G377–G385
  • Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Molecular Endocrinology 2006; 20(6)1333–1351
  • Clodfelter KH, Miles GD, Wauthier V, Holloway MG, Zhang X, Hodor P, Ray WJ, Waxman DJ. Role of STAT5a in regulation of sex-specific gene expression in female but not male mouse liver revealed by microarray analysis. Physiology and Genomics 2007; 31(1)63–74
  • Cohn MA, Rounds DJ, Karpen SJ, Ananthanarayanan M, Suchy FJ. Assignment of a rat liver Na+/bile acid cotransporter gene to chromosome 6q24. Mammalian Genome 1995; 6(1)60
  • Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. American Journal of Physiology 1998; 274(1 Pt 1)G157–G169
  • Crocenzi FA, Mottino AD, Sanchez Pozzi EJ, Pellegrino JM, Rodriguez Garay EA, Milkiewicz P, Vore M, Coleman R, Roma MG. Impaired localisation and transport function of canalicular Bsep in taurolithocholate induced cholestasis in the rat. Gut 2003a; 52(8)1170–1177
  • Crocenzi FA, Sanchez Pozzi EJ, Pellegrino JM, Rodriguez Garay EA, Mottino AD, Roma MG. Preventive effect of silymarin against taurolithocholate-induced cholestasis in the rat. Biochemical Pharmacology 2003b; 66(2)355–364
  • Crossman MW, Hauft SM, Gordon JI. The mouse ileal lipid-binding protein gene: A model for studying axial patterning during gut morphogenesis. Journal of Cell Biology 1994; 126(6)1547–1564
  • Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS. Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. Journal of Biology and Chemistry 2003; 278(36)33920–33927
  • Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N. The heteromeric organic solute transporter alpha–beta, Ostalpha–Ostbeta, is an ileal basolateral bile acid transporter. Journal of Biology and Chemistry 2005; 280(8)6960–6968
  • Denson LA, Karpen SJ, Bogue CW, Jacobs HC. Divergent homeobox gene hex regulates promoter of the Na(+)-dependent bile acid cotransporter. American Journal of Physiology and Gastrointestinal Liver Physiology 2000; 279(2)G347–G355
  • Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 2001; 121(1)140–147
  • Dias V, Ribeiro V. The expression of the solute carriers NTCP and OCT-1 is regulated by cholesterol in HepG2 cells. Fundamentals in Clinical Pharmacology 2007; 21(4)445–450
  • Dietrich CG, Martin IV, Porn AC, Voigt S, Gartung C, Trautwein C, Geier A. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha. American Journal of Physiology and Gastrointestinal Liver Physiology 2007; 293(3)G585–G590
  • Dranoff JA, McClure M, Burgstahler AD, Denson LA, Crawford AR, Crawford JM, Karpen SJ, Nathanson MH. Short-term regulation of bile acid uptake by microfilament-dependent translocation of rat ntcp to the plasma membrane. Hepatology 1999; 30(1)223–229
  • Duane WC, Xiong W, Wolvers J. Effects of bile acids on expression of the human apical sodium-dependent bile acid transporter gene. Biochimica et Biophysica Acta 2007
  • Eloranta JJ, Jung D, Kullak-Ublick GA. The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Molecular Endocrinology 2006; 20(1)65–79
  • Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, Meier PJ. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: A potential mechanism for hepatic adverse reactions. Clinical Pharmacology and Therapy 2001; 69(4)223–231
  • Figge A, Lammert F, Paigen B, Henkel A, Matern S, Korstanje R, Shneider BL, Chen F, Stoltenberg E, Spatz K, et al. Hepatic overexpression of murine Abcb11 increases hepatobiliary lipid secretion and reduces hepatic steatosis. Journal of Biology and Chemistry 2004; 279(4)2790–2799
  • Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA. Regulation of the mouse organic solute transporter alpha–beta, Ostalpha–Ostbeta, by bile acids. American Journal of Physiology and Gastrointestinal Liver Physiology 2006; 290(5)G912–G922
  • Funk C, Pantze M, Jehle L, Ponelle C, Scheuermann G, Lazendic M, Gasser R. Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology 2001; 167(1)83–98
  • Ganguly TC, O'Brien ML, Karpen SJ, Hyde JF, Suchy FJ, Vore M. Regulation of the rat liver sodium-dependent bile acid cotransporter gene by prolactin. Mediation of transcriptional activation by Stat5. Journal of Clinical Investigation 1997; 99(12)2906–2914
  • Gatmaitan ZC, Nies AT, Arias IM. Regulation and translocation of ATP-dependent apical membrane proteins in rat liver. American Journal of Physiology 1997; 272(5 Pt 1)G1041–G1049
  • Geier A, Fickert P, Trauner M. Mechanisms of disease: Mechanisms and clinical implications of cholestasis in sepsis. Nature Clinical Practise in Gastroenterology and Hepatology 2006; 3(10)574–585
  • Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochimica et Biophysica Acta 2007; 1773(3)283–308
  • Gerloff T, Geier A, Roots I, Meier PJ, Gartung C. Functional analysis of the rat bile salt export pump gene promoter. European Journal of Biochemistry 2002; 269(14)3495–3503
  • Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, Hofmann AF, Meier PJ. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. Journal of Biology and Chemistry 1998; 273(16)10046–10050
  • Geyer J, Wilke T, Petzinger E. The solute carrier family SLC10: More than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Archives in Pharmacology 2006; 372(6)413–431
  • Gong YZ, Everett ET, Schwartz DA, Norris JS, Wilson FA. Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol. Proceedings of the National Academy of Sciences, USA 1994; 91(11)4741–4745
  • Green RM, Hoda F, Ward KL. Molecular cloning and characterization of the murine bile salt export pump. Gene 2000; 241(1)117–123
  • Gronemeyer H, Gustafsson JA, Laudet V. Principles for modulation of the nuclear receptor superfamily. Nature Reviews in Drug Discovery 2004; 3(11)950–964
  • Grune S, Engelking LR, Anwer MS. Role of intracellular calcium and protein kinases in the activation of hepatic Na+/taurocholate cotransport by cyclic AMP. Journal of Biology and Chemistry 1993; 268(24)17734–17741
  • Hagenbuch B. Molecular properties of hepatic uptake systems for bile acids and organic anions. Journal of Membrane Biology 1997; 160(1)1–8
  • Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Archives 2004; 447(5)566–570
  • Hagenbuch B, Lubbert H, Stieger B, Meier PJ. Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes. Journal of Biology and Chemistry 1990; 265(10)5357–5360
  • Hagenbuch B, Meier PJ. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. Journal of Clinical Investigation 1994; 93(3)1326–1331
  • Hagenbuch B, Meier PJ. Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Seminars in Liver Disease 1996; 16(2)129–136
  • Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: Phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Archives 2004; 447(5)653–665
  • Hagenbuch B, Scharschmidt BF, Meier PJ. Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes. Biochemistry Journal 1996; 316(Pt 3)901–904
  • Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proceedings of the National Academy of Sciences, USA 1991; 88(23)10629–10633
  • Hallen S, Mareninova O, Branden M, Sachs G. Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry 2002; 41(23)7253–7266
  • Hata S, Wang P, Eftychiou N, Ananthanarayanan M, Batta A, Salen G, Pang KS, Wolkoff AW. Substrate specificities of rat oatp1 and ntcp: Implications for hepatic organic anion uptake. American Journal of Physiology and Gastrointestinal Liver Physiology 2003; 285(5)G829–G839
  • Hayakawa T, Bruck R, Ng OC, Boyer JL. DBcAMP stimulates vesicle transport and HRP excretion in isolated perfused rat liver. American Journal of Physiology 1990; 259(5 Pt 1)G727–G735
  • Hayashi H, Takada T, Suzuki H, Akita H, Sugiyama Y. Two common PFIC2 mutations are associated with the impaired membrane trafficking of BSEP/ABCB11. Hepatology 2005; 41(4)916–924
  • Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Molecular Cell Biology 2001; 21(4)1393–1403
  • Heubi JE, Balistreri WF, Fondacaro JD, Partin JC, Schubert WK. Primary bile acid malabsorption: Defective in vitro ileal active bile acid transport. Gastroenterology 1982; 83(4)804–811
  • Ho RH, Leake BF, Roberts RL, Lee W, Kim RB. Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. Journal of Biology and Chemistry 2004; 279(8)7213–7222
  • Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Archives of Internal Medicine 1999; 159(22)2647–2658
  • Hofmann AF. Biliary secretion and excretion in health and disease: Current concepts. Annals of Hepatology 2007; 6(1)15–27
  • Horie T, Mizuma T, Kasai S, Awazu S. Conformational change in plasma albumin due to interaction with isolated rat hepatocyte. American Journal of Physiology 1988; 254(4 Pt 1)G465–G470
  • Huang HC, Tremont SJ, Lee LF, Keller BT, Carpenter AJ, Wang CC, Banerjee SC, Both SR, Fletcher T, Garland DJ, et al. Discovery of potent, nonsystemic apical sodium-codependent bile acid transporter inhibitors (Part 2). Journal of Medicine and Chemistry 2005; 48(18)5853–5868
  • Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metabolism 2005; 2(4)217–225
  • Jansen PL, Strautnieks SS, Jacquemin E, Hadchouel M, Sokal EM, Hooiveld GJ, Koning JH, De Jager-Krikken A, Kuipers F, Stellaard F, et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 1999; 117(6)1370–1379
  • Jung D, Fantin AC, Scheurer U, Fried M, Kullak-Ublick GA. Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut 2004; 53(1)78–84
  • Jung D, Fried M, Kullak-Ublick GA. Human apical sodium-dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator-activated receptor alpha. Journal of Biology and Chemistry 2002; 277(34)30559–30566
  • Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. American Journal of Physiology and Gastrointestinal Liver Physiology 2004; 286(5)G752–G761
  • Jung D, Kullak-Ublick GA. Hepatocyte nuclear factor 1 alpha: A key mediator of the effect of bile acids on gene expression. Hepatology 2003; 37(3)622–631
  • Kagawa T, Watanabe N, Mochizuki K, Numari A, Ikeno Y, Itoh J, Tanaka H, Arias IM, Mine T. Phenotypic differences in PFIC2 and BRIC2 correlate with protein stability of mutant Bsep and impaired taurocholate secretion in MDCK II cells. American Journal of Physiology and Gastrointestinal Liver Physiology 2008; 294(1)G258–G267
  • Karpen SJ. Nuclear receptor regulation of hepatic function. Journal of Hepatology 2002; 36(6)832–850
  • Kassam A, Miao B, Young PR, Mukherjee R. Retinoid X receptor (RXR) agonist-induced antagonism of farnesoid X receptor (FXR) activity due to absence of coactivator recruitment and decreased DNA binding. Journal of Biology and Chemistry 2003; 278(12)10028–10032
  • Keitel V, Vogt C, Haussinger D, Kubitz R. Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 2006; 131(2)624–629
  • Kerr TA, Saeki S, Schneider M, Schaefer K, Berdy S, Redder T, Shan B, Russell DW, Schwarz M. Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Developmental Cell 2002; 2(6)713–720
  • Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA, Gonzalez FJ. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. Journal of Lipid Research 2007; 48(12)2664–2772
  • Kim JY, Kim KH, Lee JA, Namkung W, Sun AQ, Ananthanarayanan M, Suchy FJ, Shin DM, Muallem S, Lee MG. Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells. Gastroenterology 2002; 122(7)1941–1953
  • Kim RB, Leake B, Cvetkovic M, Roden MM, Nadeau J, Walubo A, Wilkinson GR. Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity. Journal of Pharmacology and Experimental Therapy 1999; 291(3)1204–1209
  • Kipp H, Arias IM. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. Journal of Biology and Chemistry 2000; 275(21)15917–15925
  • Kipp H, Pichetshote N, Arias IM. Transporters on demand: Intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. Journal of Biology and Chemistry 2001; 276(10)7218–7224
  • Klaassen CD. Effect of microsomal enzyme inducers on the biliary excretion of cardiac glycosides. Journal of Pharmacology and Experimental Therapy 1974; 191(2)201–211
  • Krag E, Phillips SF. Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. Journal of Clinical Investigation 1974; 53(6)1686–1694
  • Kramer W, Stengelin S, Baringhaus KH, Enhsen A, Heuer H, Becker W, Corsiero D, Girbig F, Noll R, Weyland C. Substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. Journal of Lipid Research 1999; 40(9)1604–1617
  • Kramer W, Wess G. Bile acid transport systems as pharmaceutical targets. European Journal of Clinical Investigation 1996; 26(9)715–732
  • Krause U, Rider MH, Hue L. Protein kinase signaling pathway triggered by cell swelling and involved in the activation of glycogen synthase and acetyl-CoA carboxylase in isolated rat hepatocytes. Journal of Biology and Chemistry 1996; 271(28)16668–16673
  • Kubitz R, Saha N, Kuhlkamp T, Dutta S, Vom Dahl S, Wettstein M, Haussinger D. Ca2+-dependent protein kinase C isoforms induce cholestasis in rat liver. Journal of Biology and Chemistry 2004a; 279(11)10323–10330
  • Kubitz R, Sutfels G, Kuhlkamp T, Kolling R, Haussinger D. Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 2004b; 126(2)541–553
  • Kuhlkamp T, Keitel V, Helmer A, Haussinger D, Kubitz R. Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system. Biology and Chemistry 2005; 386(10)1065–1074
  • Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, et al. Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 1997; 113(4)1295–1305
  • Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ. Hepatic transport of bile salts. Seminars in Liver Disease 2000; 20(3)273–292
  • Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 2004; 126(1)322–342
  • Kurata H, Suzuki S, Ohhata Y, Ikeda T, Hasegawa T, Kitayama K, Inaba T, Kono K, Kohama T. A novel class of apical sodium-dependent bile acid transporter inhibitors: The amphiphilic 4-oxo-1-phenyl-1,4-dihydroquinoline derivatives. Bioorganic Medicine and Chemistry Letters 2004; 14(5)1183–1186
  • Lam P, Pearson CL, Soroka CJ, Xu S, Mennone A, Boyer JL. Levels of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases. American Journal of Physiology Cell Physiology 2007; 293(5)C1709–1716
  • Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. American Journal of Physiology and Gastrointestinal Liver Physiology 2006; 290(3)G476–G485
  • Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, Kullak-Ublick GA, Meier PJ, Pauli-Magnus C. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenetics and Genomics 2007; 17(1)47–60
  • Lang T, Haberl M, Jung D, Drescher A, Schlagenhaufer R, Keil A, Mornhinweg E, Stieger B, Kullak-Ublick GA, Kerb R. Genetic variability, haplotype structures, and ethnic diversity of hepatic transporters MDR3 (ABCB4) and bile salt export pump (ABCB11). Drug Metabolism and Disposition 2006; 34(9)1582–1599
  • Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. Journal of Clinical Investigation 1997; 100(11)2714–2721
  • Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD. Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Molecular Pharmacology 2000; 57(1)24–35
  • Lee JM, Trauner M, Soroka CJ, Stieger B, Meier PJ, Boyer JL. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology 2000; 118(1)163–172
  • Li H, Chen F, Shang Q, Pan L, Shneider BL, Chiang JY, Forman BM, Ananthanarayanan M, Tint GS, Salen G, et al. FXR-activating ligands inhibit rabbit ASBT expression via FXR-SHP-FTF cascade. American Journal of Physiology and Gastrointestinal Liver Physiology 2005; 288(1)G60–G66
  • Li N, Cui Z, Fang F, Lee JY, Ballatori N. Heterodimerization, trafficking and membrane topology of the two proteins, Ost alpha and Ost beta, that constitute the organic solute and steroid transporter. Biochemistry Journal 2007; 407(3)363–372
  • Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science 2002; 296(5571)1313–1316
  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 1999; 284(5418)1362–1365
  • Mareninova O, Shin JM, Vagin O, Turdikulova S, Hallen S, Sachs G. Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry 2005; 44(42)13702–13712
  • Mataki C, Magnier BC, Houten SM, Annicotte JS, Argmann C, Thomas C, Overmars H, Kulik W, Metzger D, Auwerx J, et al. Compromised intestinal lipid absorption in mice with a liver-specific deficiency of the Liver Receptor Homolog 1. Molecular Cell Biology 2007; 27(23)8330–8339
  • McClintock C, Shiau YF. Jejunum is more important than terminal ileum for taurocholate absorption in rats. American Journal of Physiology 1983; 244(5)G507–G514
  • Meier PJ. Molecular mechanisms of hepatic bile salt transport from sinusoidal blood into the bile. American Journal of Physiology 1995; 269(6 Pt 1)G801–G812
  • Meier PJ, Eckhardt U, Schroeder A, Hagenbuch B, Stieger B. Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 1997; 26(6)1667–1677
  • Meier PJ, Stieger B. Bile salt transporters. Annuals Reviews in Physiology 2002; 64: 635–661
  • Meier Y, Pauli-Magnus C, Zanger UM, Klein K, Schaeffeler E, Nussler AK, Nussler N, Eichelbaum M, Meier PJ, Stieger B. Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver. Hepatology 2006; 44(1)62–74
  • Misra S, Ujhazy P, Gatmaitan Z, Varticovski L, Arias IM. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. Journal of Biology and Chemistry 1998; 273(41)26638–26644
  • Misra S, Ujhazy P, Varticovski L, Arias IM. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proceedings of the National Academy of Sciences, USA 1999; 96(10)5814–5819
  • Misra S, Varticovski L, Arias IM. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. American Journal of Physiology and Gastrointestinal Liver Physiology 2003; 285(2)G316–G324
  • Miyata M, Kudo G, Lee YH, Yang TJ, Gelboin HV, Fernandez-Salguero P, Kimura S, Gonzalez FJ. Targeted disruption of the microsomal epoxide hydrolase gene. Microsomal epoxide hydrolase is required for the carcinogenic activity of 7,12-dimethylbenz[a]anthracene. Journal of Biology and Chemistry 1999; 274(34)23963–23968
  • Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: Constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacology Reviews 2006; 58(4)742–759
  • Mukhopadhayay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS. cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes. American Journal of Physiology 1997; 273(4 Pt 1)G842–G848
  • Mukhopadhyay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS. Sodium taurocholate cotransporting polypeptide is a serine, threonine phosphoprotein and is dephosphorylated by cyclic adenosine monophosphate. Hepatology 1998a; 28(6)1629–1636
  • Mukhopadhyay S, Webster CR, Anwer MS. Role of protein phosphatases in cyclic AMP-mediated stimulation of hepatic Na+/taurocholate cotransport. Journal of Biology and Chemistry 1998b; 273(45)30039–30045
  • Neimark E, Chen F, Li X, Magid MS, Alasio TM, Frankenberg T, Sinha J, Dawson PA, Shneider BL. c-Fos is a critical mediator of inflammatory-mediated repression of the apical sodium-dependent bile acid transporter. Gastroenterology 2006; 131(2)554–567
  • Neimark E, Chen F, Li X, Shneider BL. Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 2004; 40(1)149–156
  • Noe J, Hagenbuch B, Meier PJ, St-Pierre MV. Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 2001; 33(5)1223–1231
  • Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, Mullhaupt B, Meier PJ, Pauli-Magnus C. Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. Journal of Hepatology 2005; 43(3)536–543
  • Noe J, Stieger B, Meier PJ. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 2002; 123(5)1659–1666
  • Nowicki MJ, Shneider BL, Paul JM, Heubi JE. Glucocorticoids upregulate taurocholate transport by ileal brush-border membrane. American Journal of Physiology 1997; 273(1 Pt 1)G197–G203
  • Oelkers P, Kirby LC, Heubi JE, Dawson PA. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). Journal of Clinical Investigation 1997; 99(8)1880–1887
  • Okuwaki M, Takada T, Iwayanagi Y, Koh S, Kariya Y, Fujii H, Suzuki H. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR-1 elements shared with FXR. Pharmaceutical Research 2007; 24(2)390–398
  • Oude Elferink RP, Paulusma CC, Groen AK. Hepatocanalicular transport defects: Pathophysiologic mechanisms of rare diseases. Gastroenterology 2006; 130(3)908–925
  • Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, et al. Bile acids: Natural ligands for an orphan nuclear receptor. Science 1999; 284(5418)1365–1368
  • Pauli-Magnus C, Kerb R, Fattinger K, Lang T, Anwald B, Kullak-Ublick GA, Beuers U, Meier PJ. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 2004a; 39(3)779–791
  • Pauli-Magnus C, Lang T, Meier Y, Zodan-Marin T, Jung D, Breymann C, Zimmermann R, Kenngott S, Beuers U, Reichel C, et al. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 2004b; 14(2)91–102
  • Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology 2006; 44(4)778–787
  • Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ. Enterohepatic transport of bile salts and genetics of cholestasis. Journal of Hepatology 2005; 43(2)342–357
  • Plass JR, Molecular O, Heegsma J, Geuken M, De Bruin J, Elling G, Muller M, Faber KN, Jansen PL. A progressive familial intrahepatic cholestasis type 2 mutation causes an unstable, temperature-sensitive bile salt export pump. Journal of Hepatology 2004; 40(1)24–30
  • Rausa FM, Tan Y, Zhou H, Yoo KW, Stolz DB, Watkins SC, Franks RR, Unterman TG, Costa RH. Elevated levels of hepatocyte nuclear factor 3beta in mouse hepatocytes influence expression of genes involved in bile acid and glucose homeostasis. Molecular Cell Biology 2000; 20(21)8264–8282
  • Rizzo G, Renga B, Antonelli E, Passeri D, Pellicciari R, Fiorucci S. The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes. Molecular Pharmacology 2005; 68(2)551–558
  • Root C, Smith CD, Sundseth SS, Pink HM, Wilson JG, Lewis MC. Ileal bile acid transporter inhibition, CYP7A1 induction, and antilipemic action of 264W94. Journal of Lipid Research 2002; 43(8)1320–1330
  • Saito S, Iida A, Sekine A, Miura Y, Ogawa C, Kawauchi S, Higuchi S, Nakamura Y. Three hundred twenty-six genetic variations in genes encoding nine members of ATP-binding cassette, subfamily B (ABCB/MDR/TAP), in the Japanese population. Journal of Human Genetics 2002; 47(1)38–50
  • Schmitt M, Kubitz R, Lizun S, Wettstein M, Haussinger D. Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity. Hepatology 2001; 33(3)509–518
  • Seward DJ, Koh AS, Boyer JL, Ballatori N. Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. Journal of Biology and Chemistry 2003; 278(30)27473–27482
  • Shiao T, Iwahashi M, Fortune J, Quattrochi L, Bowman S, Wick M, Qadri I, Simon FR. Structural and functional characterization of liver cell-specific activity of the human sodium/taurocholate cotransporter. Genomics 2000; 69(2)203–213
  • Shih DQ, Bussen M, Sehayek E, Ananthanarayanan M, Shneider BL, Suchy FJ, Shefer S, Bollileni JS, Gonzalez FJ, Breslow JL, et al. Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Nature Genetics 2001; 27(4)375–382
  • Shulman AI, Mangelsdorf DJ. Retinoid x receptor heterodimers in the metabolic syndrome. New England Journal of Medicine 2005; 353(6)604–615
  • Simon FR, Fortune J, Iwahashi M, Qadri I, Sutherland E. Multihormonal regulation of hepatic sinusoidal Ntcp gene expression. American Journal of Physiology and Gastrointestinal Liver Physiology 2004; 287(4)G782–G794
  • Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102(6)731–744
  • Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000; 118(2)422–430
  • Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Archives 2007; 453(5)611–620
  • Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nature Genetics 1998; 20(3)233–238
  • Suchy FJ, Ananthanarayanan M. Bile salt excretory pump: Biology and pathobiology. Journal of Pediatric Gastroenterology and Nutrition 2006; 43(Suppl. 1)S10–S16
  • Sun AQ, Ananthanarayanan M, Soroka CJ, Thevananther S, Shneider BL, Suchy FJ. Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. American Journal of Physiology 1998; 275(5 Pt 1)G1045–G1055
  • Sun AQ, Arrese MA, Zeng L, Swaby I, Zhou MM, Suchy FJ. The rat liver Na(+)/bile acid cotransporter. Importance of the cytoplasmic tail to function and plasma membrane targeting. Journal of Biology and Chemistry 2001; 276(9)6825–6833
  • Sun AQ, Balasubramaniyan N, Xu K, Liu CJ, Ponamgi VM, Liu H, Suchy FJ. Protein–protein interactions and membrane localization of the human organic solute transporter. American Journal of Physiology and Gastrointestinal Liver Physiology 2007; 292(6)G1586–G1593
  • Sun AQ, Salkar R, Sachchidanand, Xu S, Zeng L, Zhou MM, Suchy FJ. A 14-amino acid sequence with a beta-turn structure is required for apical membrane sorting of the rat ileal bile acid transporter. Journal of Biology and Chemistry 2003; 278(6)4000–4009
  • Teng S, Piquette-Miller M. The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice. Journal of Pharmacology and Experimental Therapy 2005; 312(2)841–848
  • Thaysen EH, Pedersen L. Diarrhoea associated with idiopathic bile acid malabsorption. Fact or fantasy?. Danish Medical Bulletin 1973; 20(6)174–177
  • Thomas C, Landrier JF, Gaillard D, Grober J, Monnot MC, Athias A, Besnard P. Cholesterol dependent downregulation of mouse and human apical sodium-dependent bile acid transporter (ASBT) gene expression: Molecular mechanism and physiological consequences. Gut 2006; 55(9)1321–1331
  • Tollefson MB, Vernier WF, Huang HC, Chen FP, Reinhard EJ, Beaudry J, Keller BT, Reitz DB. A novel class of apical sodium co-dependent bile acid transporter inhibitors: The 2,3-disubstituted-4-phenylquinolines. Bioorganic Medicine and Chemistry Letters 2000; 10(3)277–279
  • Trauner M, Arrese M, Lee H, Boyer JL, Karpen SJ. Endotoxin downregulates rat hepatic ntcp gene expression via decreased activity of critical transcription factors. Journal of Clinical Investigation 1998; 101(10)2092–2100
  • Trauner M, Boyer JL. Bile salt transporters: Molecular characterization, function, and regulation. Physiology Reviews 2003; 83(2)633–671
  • Van Dyke RW, Stephens JE, Scharschmidt BF. Bile acid transport in cultured rat hepatocytes. American Journal of Physiology 1982; 243(6)G484–G492
  • Van Mil SW, Van der Woerd WL, Van der Brugge G, Sturm E, Jansen PL, Bull LN, Van den Berg IE, Berger R, Houwen RH, Klomp LW. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 2004; 127(2)379–384
  • Von Bergmann K, Schwarz HP, Paumgartner G. Proceedings: Increased cholesterol saturation in rat bile induced by spironolactone and pregnenolone-16alpha-carbonitrile. Naunyn Schmiedebergs Archives in Pharmacology 1974; 282(Suppl. 282)R288
  • Von Dippe P, Amoui M, Stellwagen RH, Levy D. The functional expression of sodium-dependent bile acid transport in Madin–Darby canine kidney cells transfected with the cDNA for microsomal epoxide hydrolase. Journal of Biology and Chemistry 1996; 271(30)18176–18180
  • Von Dippe P, Zhu QS, Levy D. Cell surface expression and bile acid transport function of one topological form of m-epoxide hydrolase. Biochemical and Biophysical Research Communications 2003; 309(4)804–809
  • Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Molecular Cell 1999; 3(5)543–553
  • Wang L, Lee YK, Bundman D, Han Y, Thevananther S, Kim CS, Chua SS, Wei P, Heyman RA, Karin M, et al. Redundant pathways for negative feedback regulation of bile acid production. Developmental Cell 2002a; 2(6)721–731
  • Wang L, Soroka CJ, Boyer JL. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. Journal of Clinical Investigation 2002b; 110(7)965–972
  • Wang R, Lam P, Liu L, Forrest D, Yousef IM, Mignault D, Phillips MJ, Ling V. Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P-glycoprotein. Hepatology 2003; 38(6)1489–1499
  • Wang R, Salem M, Yousef IM, Tuchweber B, Lam P, Childs SJ, Helgason CD, Ackerley C, Phillips MJ, Ling V. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proceedings of the National Academy of Sciences, USA 2001a; 98(4)2011–2016
  • Wang W, Seward DJ, Li L, Boyer JL, Ballatori N. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proceedings of the National Academy of Sciences, USA 2001b; 98(16)9431–9436
  • Wang W, Soroka CJ, Mennone A, Rahner C, Harry K, Pypaert M, Boyer JL. Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. Gastroenterology 2006; 131(3)878–884
  • Webster CR, Anwer MS. Role of the PI3K/PKB signaling pathway in cAMP-mediated translocation of rat liver Ntcp. American Journal of Physiology 1999; 277(6 Pt 1)G1165–G1172
  • Webster CR, Blanch C, Anwer MS. Role of PP2B in cAMP-induced dephosphorylation and translocation of NTCP. American Journal of Physiology and Gastrointestinal Liver Physiology 2002; 283(1)G44–G50
  • Webster CR, Blanch CJ, Phillips J, Anwer MS. Cell swelling-induced translocation of rat liver Na(+)/taurocholate cotransport polypeptide is mediated via the phosphoinositide 3-kinase signaling pathway. Journal of Biology and Chemistry 2000; 275(38)29754–29760
  • Weinman SA. Electrogenicity of Na(+)-coupled bile acid transporters. Yale Journal of Biology and Medicine 1997; 70(4)331–340
  • Weinman SA, Carruth MW, Dawson PA. Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. Journal of Biology and Chemistry 1998; 273(52)34691–34695
  • Wess G, Kramer W, Enhsen A, Glombik H, Baringhaus KH, Boger G, Urmann M, Bock K, Kleine H, Neckermann G, et al. Specific inhibitors of ileal bile acid transport. Journal of Medicine and Chemistry 1994; 37(7)873–875
  • West KL, Ramjiganesh T, Roy S, Keller BT, Fernandez ML. 1-[4-[4[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs. Journal of Pharmacology and Experimental Therapy 2002; 303(1)293–299
  • Wilson FA, Treanor LL. Characterization of the passive and active transport mechanisms for bile acid uptake into rat isolated intestinal epithelial cells. Biochimica et Biophysica Acta 1975; 406(2)280–293
  • Wolters H, Elzinga BM, Baller JF, Boverhof R, Schwarz M, Stieger B, Verkade HJ, Kuipers F. Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. Journal of Hepatology 2002; 37(5)556–563
  • Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. Journal of Biology and Chemistry 1994; 269(2)1340–1347
  • Wong MH, Oelkers P, Dawson PA. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. Journal of Biology and Chemistry 1995; 270(45)27228–27234
  • Wong MH, Rao PN, Pettenati MJ, Dawson PA. Localization of the ileal sodium-bile acid cotransporter gene (SLC10A2) to human chromosome 13q33. Genomics 1996; 33(3)538–540
  • Xia X, Roundtree M, Merikhi A, Lu X, Shentu S, Lesage G. Degradation of the apical sodium-dependent bile acid transporter by the ubiquitin-proteasome pathway in cholangiocytes. Journal of Biology and Chemistry 2004; 279(43)44931–44937
  • Yamamoto Y, Moore R, Hess HA, Guo GL, Gonzalez FJ, Korach KS, Maronpot RR, Negishi M. Estrogen receptor alpha mediates 17alpha-ethynylestradiology causing hepatotoxicity. Journal of Biology and Chemistry 2006; 281(24)16625–16631
  • Yu J, Lo JL, Huang L, Zhao A, Metzger E, Adams A, Meinke PT, Wright SD, Cui J. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. Journal of Biology and Chemistry 2002; 277(35)31441–31447
  • Zhu QS, Xing W, Qian B, Von Dippe P, Shneider BL, Fox VL, Levy D. Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia. Biochimica et Biophysica Acta 2003; 1638(3)208–216
  • Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: Pathogenetic and therapeutic considerations. Molecular Pharmacology 2006a; 3(3)231–251
  • Zollner G, Wagner M, Fickert P, Geier A, Fuchsbichler A, Silbert D, Gumhold J, Zatloukal K, Kaser A, Tilg H, et al. Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. American Journal of Physiology and Gastrointestinal Liver Physiology 2005; 289(5)G798–G805
  • Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J, Fuchsbichler A, Halilbasic E, Denk H, Marschall HU, et al. Coordinated induction of bile acid detoxification and alternative elimination in mice: Role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. American Journal of Physiology and Gastrointestinal Liver Physiology 2006b; 290(5)G923–G932

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.