Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 39, 2009 - Issue 8: Commemorative Issue: Professor George Gordon Gibson
318
Views
18
CrossRef citations to date
0
Altmetric
Review Article

CYP1B1, a developmental gene with a potential role in glaucoma therapy

, &
Pages 606-615 | Received 29 Mar 2009, Accepted 28 Apr 2009, Published online: 21 Jul 2009

References

  • Acharya MM, Mookherjee S, Bhattacharjee A, Bandyopadhyay SD, Bhaduri G, Sen A, Ray K (2006). Primary role of CYP1B1 in Indian juvenile-onset POAG patents. Mol Vis 12:399–404.
  • Allingham RR, Liu Y, Rhee DJ (2009). The genetics of primary open-angle glaucoma: a review. Exp Eye Res 88(4):837-44.
  • Anderson DR (1981). The development of the trabecular meshwork and its abnormality in primary infantile glaucoma. Trans Am Ophthalmol Soc 79:458–85.
  • Aoki H, Hara A, Niwa M, Motohashi T, Suzuki T, Kunisada T (2007). An in vitro mouse model for retinal ganglion cell replacement therapy using eye-like structures differentiated from ES cells. Exp Eye Res 84:868–75.
  • Barraza RA, Rasmussen CA, Loewen N, Cameron JD, Gabelt BT, Teo W-L, Kaufman PL, Poeschla EM (2009). Prolonged transgene expression with lentiviral vectors in the aqueous humor outflow pathway of nonhuman primates. Hum Gene Ther 20:191–200.
  • Baulmann DC, Ohlmann A, Flugel-Koch C, Goswami S, Cvekl A, Tamm ER (2002). Pax6 heterozygous eyes show defects in chamber angle differentiation that are associated with a wide spectrum of other anterior eye segment abnormalities. Mech Develop 118:3–17.
  • Bayat B, Yazdani S, Alavi A, Chiani M, Chitsazian F, Tusi BK, Suri F, Narooie-Nejhad M, Sanati MH, Elahi E. (2008). Contributions of MYOC and CYP1B1 mutations to JOAG. Mol Vis 14:508–17.
  • Bejjani BA, Stockton DW, Lewis RA, Tomey KF, Dueker DK, Jabak M, Astle WF, Lupski JR (2000). Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum Mol Genet 9:367–74.
  • Buters JT, Sakai S, Richter T, Pineau T, Alexander DL, Savas U, Doehmer J, Ward JM, Jefcoate CR, Gonzalez FJ (1999). Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas. Proc Natl Acad Sci USA 96:1977–82.
  • Byrne JA (2008). Generation of isogenic pluripotent stem cells. Hum Mol Genet 17:R37–41.
  • Chakrabarti S, Devi KR, Komatireddy S, Kaur K, Parikh RS, Mandal AK, Chandrasekhar G, Thomas R. (2007). Glaucoma-associated CYP1B1 mutations share similar haplotype backgrounds in POAG and PACG phenotypes. Invest Ophthalmol Vis Sci 48(12):5439–44.
  • Campos-Mollo E, Lopez-Garrido MP, Blanco-Marchite C, Garcia-Feijoo J, Peralta J, Belmonte-Martinez J, Ayuso C, Escribano J (2009). CYP1B1 mutations in Spanish patients with primary congenital glaucoma: phenotypic and functional variability. Mol Vis 15:417–31.
  • Chavarria-Soley G, Michels-Rautenstrauss K, Caliebe A, Kautza M, Mardin C, Rautenstrauss B (2006). Novel CYP1B1 and known PAX6 mutations in anterior segment dysgenesis (ASD). J Glaucoma 16:499–504.
  • Chavarria-Soley G, Sticht H, Aklillu E, Ingelman-Sundberg M, Pasutto F, Reis A, Rautenstrauss B (2008). Mutations in CYP1B1 cause primary congenital glaucoma by reduction of either activity or abundance of the enzyme. Hum Mutat 29:1147–53.
  • Choudhary D, Jansson I, Rezaul K, Han DK, Sarfarazi M, Schenkman JB (2007). Cyp1b1 protein in the mouse eye during development: an immunohistochemical study. Drug Metab Disposit 35:987–94.
  • Choudhary D, Jansson I, Sarfarazi M, Schenkman JB (2004a). Xenobiotic-metabolizing cytochromes P450 in ontogeny: evolving perspective. Drug Metab Rev 36:547–66.
  • Choudhary D, Jansson I, Sarfarazi M, Schenkman JB (2008). Characterization of the biochemical and structural phenotypes of four CYP1B1 mutations observed in individuals with primary congenital glaucoma. Pharmacogenet Genomic 18:665–76.
  • Choudhary D, Jansson I, Schenkman JB, Sarfarazi M, Stoilov I (2003). Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Archiv Biochem Biophys 414:91–100.
  • Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB (2004b). Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1B1. Drug Metab Disposit 32:840–7.
  • Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, Pang JJ, Sumaroka A, Windsor EA, Wilson JM, Flotte TR, Fishman GA, Heon E, Stone EM, Byrne BJ, Jacobson SG, Hauswirth WW (2008). Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 105:15112–17.
  • Colella P, Cotugno G, Auricchio A (2009). Ocular gene therapy: current progress and future prospects. Trends Mol Med 15:23–31.
  • Cvekl A, Tamm ER (2004). Anterior eye development and ocular mesenchyme: new insights from mouse models and human diseases. Bioessays 26:374–86.
  • De Roos K, Sonneveld E, Compaan B, ten Berge D, Durston AJ, Van der Saag PT (1999). Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis. Mech Develop 82:205–11.
  • Dickens CJ, Hoskins JHD (1996). Diagnosis and treatment of congenital glaucoma. In: Rich R, Shields BM, Krupin T, eds. The glaucomas. St Louis, MO: Mosby, 739–49.
  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–21.
  • Doshi M, Marcus C, Bejjani BA, Edward DP (2006). Immuno localization of CYP1B1 in normal, human, foetal and adult eyes. Exp Eye Res 82:24–32.
  • Edward D, Al Rajhi A, Lewis RA, Curry S, Wang Z, Bejjani B. (2004). Molecular basis of Peters anomaly in Saudi Arabia. Ophthalmic Genet 25(4):257–70.
  • Fujii H, Sato T, Kaneko S, Gotoh O, Fujii-Kuriyama Y, Osawa K, Kato S, Hamada H (1997). Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J 16:4163–73.
  • Gill DR, Pringle IA, Hyde SC (2009). Progress and prospects: the design and production of plasmid vectors. Gene Ther 16:165–71.
  • Giordano A, Galderisi U, Marino IR (2007). From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211:27–35.
  • Gould DB, Smith RS, John SW (2004). Anterior segment development relevant to glaucoma. Int J Develop Biol 48:1015–29.
  • Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Plant GW, Cui Q (2006). Gene therapy and transplantation in CNS repair: the visual system. Progr Retinal Eye Res 25:449–89.
  • Hollemann T, Chen Y, Grunz H, Pieler T (1998). Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J 17:7361–72.
  • Jansson I, Stoilov I, Sarfarazi M, Schenkman JB (2001). Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism. Pharmacogenetics 11:793–801.
  • Johnson TV, Bull ND, Martin KR (2008). Transplantation prospects for the inner retina. Eye doi:10.1038/eye.2008.376.
  • Juchau MR, Lee QP, Fantel AG (1992). Xenobiotic biotransformation/bioactivation in organogenesis-stage conceptual tissues: implications for embryotoxicity and teratogenesis. Drug Metabol Rev 24:195–238.
  • Kelley MJ, Rose AY, Keller KE, Hessle H, Samples JR, Acott TS (2009). Stem cells in the trabecular meshwork: Present and future promises. Exp Eye Res 88(4):747–51.
  • Khare PD, Loewen N, Teo W-L, Barraza RA, Saenz DT, Johnson DH (2008). Durable, safe, multi-gene lentiviral vector expression in feline trabecular meshwork. Mol Ther 16:97–106.
  • Kumar S, Chanda D, Ponnazhagan S (2008). Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther 15:711–15.
  • Lamba D, Karl M, Reh T (2008). Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell 2:538–49.
  • Larsen-Su SA, Williams DE (2001). Transplacental exposure to indole-3-carbinol induces sex-specific expression of CYP1A1 and CYP1B1 in the liver of Fischer 344 neonatal rats. Toxicol Sci 64:162–8.
  • Lebrun-Julien F, Di Polo A (2008). Molecular and cell-based approaches for neuroprotection in glaucoma. Optom Vis Sci 85:417–24.
  • Lee DA, Higginbotham EJ (2005). Glaucoma and its treatment: a review. Am J Hlth Sys Pharm 62:691–9.
  • Libby RT, Smith RS, Savinova OV, Zabaleta A, Martin JE, Gonzalez FJ, John SW (2003). Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science 299:1578–81.
  • Liton PB, Challa P, Stinnett S, Luna C, Epstein DL, Gonzalez P (2005). Cellular senescence in the glaucomatous outflow pathway. Exp Gerontol 40:745–8.
  • López-Garrido M-P, Sánchez-Sánchez F, López-Martínez F, Aroca-Aguilar J-D, Blanco-Marchita C, Coca-Prados M, Escribano J (2006). Heterozygous CYP1B1 gene mutations in Spanish patients with primary open-angle glaucoma. Mol Vis 12:748–55.
  • Lutjen-Drecoll E (1998). Functional morphology of the trabecular meshwork in primate eyes. Progr Ret Eye Res 18:91–119.
  • Lutjen-Drecoll E, Shimizu T, Rohrbach M, Rohen JW (1986). Quantitative analysis of ‘plaque material’ in the inner- and outer wall of Schlemm’s canal in normal- and glaucomatous eyes. Exp Eye Res 42:443–55.
  • McGowan SL, Edelhauser HF, Pfister RR, Whikehart DR (2007). Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol Vis 13:1984–2000.
  • Melki R, Colomb E, Lefort N, Brezin AP, Garchon HJ. (2004). CYP1B1 mutations in French patients with early-onset primary open-angle glaucoma. J Med Genet 41(9):647–51.
  • Meyer JS, Katz ML, Maruniak JA, Kirk MD (2006). Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cell 24:274–83.
  • Murry CE, Keller G (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–80.
  • Nadri S, Soleimani M, Mobarra Z, Amini S (2008). Expression of dopamine-associated genes on conjunctiva stromal-derived human mesenchymal stem cells. Biochem Biophys Res Comm 377:423–8.
  • Nebert DW (1991). Proposed role of drug-metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol Endocrinol 5:1203–14.
  • O’Sullivan F, Clynes M (2007). Limbal stem cells, a review of their identification and culture for clinical use. Cytotechnol 53:101–6.
  • Plasilova M, Ferakova E, Kadasi L, Polakova H, Gerinec A, Ott J, Ferak V (1998). Linkage of autosomal recessive primary congenital glaucoma to the GLC3A locus in Roms (Gypsies) from Slovakia. Hum Heredity 48:30–3.
  • Plasilova M, Stoilov I, Sarfarazi M, Kadasi L, Ferakova E, Ferak V (1999). Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. J Med Genet 36:290–4.
  • Quigley HA, Broman AT (2006). The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–7.
  • Rao M (2008). Scalable human ES culture for therapeutic use: propagation, differentiation, genetic modification and regulatory issues. Gene Ther 15:82–8.
  • Raucy JL, Carpenter SJ (1993). The expression of xenobiotic- metabolizing cytochromes P450 in foetal tissues. J Pharmacol Toxicol Meth 29:121–8.
  • Ray WJ, Bain G, Yao M, Gottlieb DI (1997). CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem 272:18702–8.
  • Sarfarazi M, Akarsu AN, Hossain A, Turacli ME, Aktan SG, Barsoum-Homsy M, Chevrette L, Sayli BS (1995). Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics 30:171–7.
  • Schenkman JB, Choudhary D, Jansson I, Sarfarazi M, Stoilov I (2003). Involvement of cytochromes P450 in development. Proc Ind Natl Sci Acad B 69:917–29.
  • Smith RS, John SWM, Nishina PM (2002a). Posterior segment and orbit. In: Smith RS, John SWM, Nishina PM, Sundberg JP eds, Systemic evaluation of the mouse eye: anatomy, biochemistry and biomethods. Boca Raton, FLL CRC Press, 25–44.
  • Smith RS, Kao W, John SWM (2002b). Normal development and congenital abnormalities. In: Smith RS, John SWM, Nishina PM, Sundberg JP eds, Systemic evaluation of the mouse eye: anatomy, biochemistry and biomethods. Boca Raton, FLL CRC Press, 45–63.
  • Spaide RF (2008). The potential of pluripotent cells in vitreoretinal diseases. Retina 28:1031–4.
  • Stoilov I (2001). Cytochrome P450s: coupling, development and environment. Trend Genet 17:629–32.
  • Stoilov I, Akarsu AN, Alozie I, Child A, Barsoum-Homsy M, Turacli ME, Or M, Lewis RA, Ozdemir N, Brice G, Aktan SG, Chevrette L, Coca-Prados M, Sarfarazi M (1998). Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet 62:573–84.
  • Stoilov I, Akarsu AN, Sarfarazi M (1997). Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1). as the principal cause of primary congenital glaucoma (buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 6:641–7.
  • Stoilov I, Jansson I, Sarfarazi M, Schenkman JB (2001). Roles of cytochrome P450 in development. Drug Metab Drug Interact 18:33–55.
  • Stoilov I, Rezaie T, Jansson I, Schenkman JB, Sarfarazi M (2004). Expression of cytochrome P4501b1 (Cyp1b1) during early murine development. Mol Vis 10:629–36.
  • Suri F, Kalhor R, Zargar SJ, Nilforooshan N, Yazdani S, Nezari H, Paylakhi SH, Narooie-Nejhad M, Bayat B, Sedaghati T, Ahmadian A, Elahi E. (2008). Screening of common CYP1B1 mutations in Iranian POAG patients using a microarray-based PrASE protocol. Mol Vis 14:2349–56.
  • Swijnenburg RJ, Schrepfer S, Govaert JA, Cao F, Ransohoff K, Sheikh AY, Haddad M, Connolly AJ, Davis MM, Robbins RC, Wu JC (2008). Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci USA 105:12991–6.
  • Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G (1999). Complementary domains of retinoic acid production and degradation in the early chick embryo. Develop Biol 216:282–96.
  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76.
  • Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–25.
  • Tektas OY, Lutjen-Drecoll E (2009). Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res 88(4):769-75.
  • Varma R, Peeples P, Walt JG, Bramley TJ (2008). Disease progression and the need for neuroprotection in glaucoma management. Am J Manag Care 14:S15–19.
  • Vasiliou V, Gonzalez FJ (2008). Role of CYP1B1 in glaucoma. Ann Rev Pharmacol Toxicol 48:333–58.
  • Vincent A, Billingsley G, Priston M, Glaser T, Oliver E, Walter M, Ritch R, Levin A, Heon E (2006). Further support of the role of CYP1B1 in patients with Peters anomaly. Mol Vis 12:506–10.
  • Vincent AL, Billingsley G, Buys Y, Levin AV, Priston M, Trope G, Williams-Lyn D, Heon E (2002). Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet 70:448–60.
  • Walker NJ, Crofts FG, Li Y, Lax SF, Hayes CL, Strickland PT, Lucier GW, Sutter TR (1998). Induction and localization of cytochrome P450 1B1 (CYP1B1) protein in the livers of TCDD-treated rats: detection using polyclonal antibodies raised to histidine-tagged fusion proteins produced and purified from bacteria. Carcinogenesis 19:395–402.
  • Wang N, Chintala SK, Fini ME, Schuman JS (2001). Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. Nat Med 7:304–9.
  • Weinreb RN (2007). Glaucoma neuroprotection: What is it? Why is it needed? Can J Ophthalmol 42:396–8.
  • White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997). cDNA cloning of human retinoic acid- metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem 272:18538–541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.