Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 48, 2018 - Issue 2
231
Views
4
CrossRef citations to date
0
Altmetric
Topics in Xenobiochemistry

Xenobiotic C-sulfonate derivatives; metabolites or metabonates?

Pages 211-218 | Received 03 Jan 2017, Accepted 05 Feb 2017, Published online: 28 Feb 2017

References

  • Abbanat DR, Godehaux W, Polychroniou G, Leadbetter ER. (1985). Biosynthesis of a sulfonolipid in gliding bacteria. Biochem Biophys Res Commun 130:873–8
  • Adams MD, Wedig JH, Jordan RL, et al. (1976). Urinary excretion and metabolism of salts of 2-pyridinethiol-1-oxide following intravenous administration to female Yorkshire pigs. Toxicol Appl Pharmacol 36:523–31
  • Aizawa H. (2001). Metabolic maps: pesticides, environmentally relevant molecules, biologically active molecules. London: Academic Press, 205
  • Baumann E. (1876a). Ueber das Vorkommen von Brenzcatechin im Harn. Pfluegers Arch Physiol 12:63–8
  • Baumann E. (1876b). Ueber gepaarte Schwefelsäuren im Harn. Pfluegers Arch Physiol 12:69–70
  • Baumann E. (1876c). Ueber Sulfosäuren im Harn. Ber Deut Chem Ges 9:54–8
  • Baumann E. (1876d). Ueber gepaarte Schwefelsäuren im Organismus. Pfluegers Arch Physiol 13:285–308
  • Baumann E. (1876e). Ueber α-Kresylschwefelsäure. Ber Dtsch Chem Ges 9:1389–92
  • Baumann E, Herter E. (1877/1878). Ueber die Synthese von Aetherschwefelsäuren und das Verhalten einiger aromatischer Substanzen im Thierkörper. Hoppe-Seyler’s Z Physiol Chem 1:244–69
  • Beckett AH. (1971). Metabolic oxidation of aliphatic basic nitrogen atoms and their α-carbon atoms. Xenobiotica 1:365–84
  • Benson AA. (1963). The plant sulfolipid. Adv Lipid Res 1:387–94
  • Bentley RK, Holliman FG. (1970). Pigments of Pseudomonas species. 3. The synthesis of demethylaeruginosin B and aeruginosin B. J Chem Soc Perkin Trans I 18:2447–57
  • Berké B, Chèze C, Vercauteren J, Deffieux G. (1998). Bisulfite addition to anthocyanins: revisited structures of colourless adducts. Tetrahedron Lett 39:5771–4
  • Boyland E, Manson D. (1955). The metabolites of 2-naphthylamine produced by rats and rabbits. Biochem J 60:ii–iii
  • Boyland E, Manson D, Orr SFD. (1957). The biochemistry of aromatic amines. II. The conversion of arylamines into arylsulphamic acids and arylamine-N-glucosiduronic acids. Biochem J 65:417–23
  • Brahmachari G. (2012). Andrographolide – a plant-derived natural molecule of pharmaceutical promise. In: Brahmachari G, ed. Bioactive natural products. Opportunities and challenges in medicinal chemistry. Singapore: World Scientific Publishing Co PTE Ltd, 335–68
  • Brown RE, Barber F. (1995). Ab initio studies of the thermochemistry of the bisulfite and the sulfonate ions and related compounds. J Phys Chem 99:8071–5
  • Budzikiewicz H. (2006). Bacterial aromatic sulfonates – a Bucherer reaction in nature? Mini-Rev Org Chem 3:93–7
  • Budzikiewicz H, Fuchs R, Taraz K, et al. (1998). Dihydropyoverdin-7-sulfonic acids – unusual bacterial metabolites. Nat Prod Lett 12:125–30
  • Carbonero F, Benefiel AC, Alizadeh-Ghamsan AH, Gaskins HR. (2012). Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3:448. doi: 10.3389/fphys.2012.00448
  • Cava MP, Chan WR, Haynes LJ, et al. (1962). The structure of andrographolide. Tetrahedron 18:397–403
  • Cerfontain H. (1968). Mechanistic aspects in aromatic sulfonation and desulfonation. New York: John-Wiley Interscience, Chpt 14
  • Chapeville F, Fromageot P. (1954). La formation enzymatique de l’acide cystéinsulfinique à partir de sulfite. Biochim Biophys Acta 14:415–20
  • Chapeville F, Fromageot P. (1957). Formation de sulphite, d’acide cystéique et de taurine é partir de sulfate par l’oeuf embryonné. Biochim Biophys Acta 26:538–58
  • Cho MJ, Krueger WC, Oesterling TO. (1977). Nucleophilic addition of bisulfite ion to prostaglandins E2 and A2: implication in aqueous stability. J Pharm Sci 66:149–54
  • Cook AM, Laue H, Junker F. (1999). Microbial desulfonation. FEMS Microbiol Rev 22:399–419
  • Cook AM, Smits THM, Denger K. (2008). Sulfonates and organotrophic sulphite metabolism. In: Dahl C, Friedrichs CG, eds. Microbial sulfur metabolism. Berlin: Springer, 170–83
  • Cui L, Qiu F, Yao XS. (2005b). Isolation and identification of seven glucuronide conjugates of andrographolide in human urine. Drug Metab Dispos 33:555–62
  • Cui L, Qiu F, Wang NL, Yao XS. (2004). Four new andrographolide metabolites in human urine. Chem Pharm Bull 52:772–5
  • Cui L, Qiu F, Wang NL, Yao XS. (2005a). A new glucuronidated metabolite of andrographolide in human. Chin Clin Lett 16:369–71
  • Cui L, Chan W, Qui F, et al. (2008). Identification of four urea adducts of andrographolide in humans. Drug Metab Lett 2:261–8
  • Davies WH, Mercer EI, Goodwin TW. (1966). Some observations on the biosynthesis of the plant sulpholipid by Euglena gracilis. Biochem J 98:369–73
  • Dessaignes V, Chautard J. (1852). Ueber das bittere princip der physalis Alkekengi. J Prakt Chem 55:323–5
  • Feng X, Liu H, Chai L, et al. (2017). Metabolic profiles of physalin A in rats using ultra-high performance liquid chromatography coupled with quadrapole time-of-flight tandem mass spectrometry. J Chromatogr B 1046:102–4
  • Gilmore DF, Godchaux W, Leadbetter ER. (1989). Cysteine is not an obligatory intermediate in the biosynthesis of cysteate by Cytophaga johnsonae. Biochem Biophys Res Commun 160:535–9
  • Gonçalves D, Alves G, Soares-da-Silva P, Falcão A. (2012). Bioanalytical chromatographic methods for the determination of catechol-O-methyltransferase inhibitors in rodents and human samples: a review. Anal Chim Acta 710:17–32
  • Gorter K. (1911). Sur le principe amer de l’Andrographis paniculate N. Rec Trav Chim 30:151–60
  • Greenberg DM. (1954). Metabolism of sulfur-containing compounds. In: Greenberg DM, ed. Chemical pathways of metabolism. Vol 2. New York: Academic Press, 149–72
  • Hamada T, Yoshida R, Nagano E, et al. (1989). S-23121 – a new cereal herbicide for broad-leaved control. Proc Brighton Crop Protect Confer 1:41–6
  • Haramaki N, Marcocci L, Kawabata T, Packer L. (1997). Antioxidant properties of the catechol derivative nitecapone. In: Packer L, Cadenas E, eds. Handbook of synthetic antioxidants. New York: Marcel Decker Inc., 241–60
  • Hayatsu H, Wataya Y, Kai K, Iida S. (1970). Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry 9:2858–65
  • He H, Zang LH, Feng YS, et al. (2013a). Physalin A induces apoptosis via p53-Noxa-mediated ROS generation, and autophagy plays a protective role against apoptosis through p38-NF-kappaB survival pathway in A375-S2 cells. J Ethnopharmacol 148:544–55
  • He H, Zang LH, Feng YS, et al. (2013b). Physalin A induces apoptotic cell death and protective autophagy in HT1080 human fibrosarcoma cells. J Nat Prod 76:880–8
  • He X, Li J, Gao H, et al. (2003a). Six new andrographolide metabolites in rats. Chem Pharm Bull 51:586–9
  • He X, Li J, Gao H, et al. (2003b). Identification of a rare sulfonic acid metabolite of andrographolide in rats. Drug Metab Dispos 31:983–5
  • Heath LR, Piggot PH. (1947). Aliphatic Nitro-compounds. Part V. Preparation of 2-nitroalkanesulphonic acids by interaction of α-nitro-olefines and sodium hydrogen sulphite. J Chem Soc 1481–5
  • Henry W. (1815). The elements of experimental chemistry. London: Badwin Cradock & Joy. 7th edn. Vol II, 352–53. (1831) Philadelphia: Robert Desilver. 11th edn. Vol II, 386
  • Herbert RB, Holliman FG. (1964). Aeruginosin B – a naturally occurring phenazine sulphonic acid. Proc Chem Soc 1964:19
  • Herbert RB, Holliman FG. (1969). Pigments of Pseudomonas species. II. Structure of aeruginosin B. J Chem Soc Perkin Trans I 18:2517–20
  • Herke R, Rasheed K. (1992). Addition of bisufite to α-olefins: synthesis of n-alkane sulfonates and characterization of intermediates. J Amer Oil Chem Soc 69:47–51
  • Hickford SJH, Kupper PC, Zhang G, et al. (2004). Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonclasticus. J Nat Prod 67:1897–9
  • Homann VV, Edwards KT, Webb EA, Butler A. (2009). Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. Biometals 22:565–71
  • Howlett HCS, Van Abbe NJ. (1975). The action and fate of sodium pyridinethione when applied topically to rabbits. J Soc Cosmet Chem 26:3015
  • Hoyle J. (1991). Preparation of sulphonic acids, esters, amides and halides. In: Patai S, Rappoport Z, eds. The chemistry of sulphonic acids, esters and their derivatives. Chichester: John Wiley & Sons, 351–99
  • Huxtable RJ. (1992). Physiological actions of taurine. Physiol Rev 72:101–63
  • Jacobsen JG, Smith LH. (1968). Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511
  • Ji L, Yuan YL, Luo L, et al. (2012). Physalins with anti-inflammatory activity are present in Physalis alkekengi var. franchetti and can function as Michael reaction acceptors. Steroids 77:441–7
  • Joslyn MA, Braverman JBS. (1954). The chemistry and technology of the pretreatment and preservation of fruit and vegetable products with sulfur dioxide and sulphite. In: Mnak EM, Stewart GF, eds. Advances in food research. Vol. 5. New York: Academic Press, 97–160
  • Kanoh K, Kamino K, Leleo G, et al. (2003). Pseudoalterobactin A and B, new siderophores excreted by marine bacterium Pseudoalteromonas sp. KP20-4. J Antibiot 56:871–5
  • Kauffman FC. (2002). Sulfonation in pharmacology and toxicology. Drug Metab Rev 36:823–43
  • Kharasch WF, May ME, Mayo RF. (1938). The peroxide effect in the addition of reagents to unsaturated compounds. XVIII. The addition and substitution of bisulphite. J Organ Chem 3:175–92
  • Korkolainen T, Nissinen E, Aho P, et al. (1990). Gastroprotective agent nitecapone reacts with sulfhydryl groups. Eur J Pharmacol 183:315–16
  • Lacosta RG, Martell AE. (1955). Preparation and properties of aminomethylenesulfonic acids. J Am Chem Soc 77:5512–15
  • Lautala P, Kivimaa M, Salomies H, et al. (1997). Glucuronidation of entacapone, nitecapone, tolcapone, and some other nitrocatechols by rat liver microsomes. Pharm Res 14:1444–8
  • Lie TJ, Leadbetter JR, Leadbetter ER. (1998). Metabolism of sulfonic acids and other organosulfur compounds by sulfate-reducing bacteria. Geomicrobiol J 15:135–49
  • Liebman JF. (1991). Thermochemistry of sulphonic acids and their derivatives. In: Patai S, Rappoport Z, eds. The chemistry of sulphonic acids, esters and their derivatives. Chichester: JohnWiley & Sons, 283–321
  • Ling Y, Wang T, Tang L, et al. (2011). Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P‐glycoprotein. J Pharmaceut Sci 100:5007–17
  • Liu H, Wang K, Xia G, et al. (2017). Two sulfonate metabolites of physalin A in rats. Xenobiotics. [Epub ahead of print]. doi: 10.1080/00498254.2016.1271961
  • Männistö PT, Kaakkola S. (1999). Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51:593–628
  • Marek-Kozaczuk M, Skorupska A. (1997). Physiological parameters influencing the production of siderophore PGPR Pseudomonas sp. 267. Acta Microbiologia Polanica 46:157–65
  • Matsuura T, Kawai M, Nakashima R, Butsugan Y. (1970). Structures of physalin A and physalin B, 13,14-seco-16,24-cyclo-steroids from Physalis alkekengi var. Francheti. J Chem Soc C 5: 664–70
  • Mayer J. (2011). Microbial desulfonation pathways for natural and pharmacologically relevant C3-sulfonates [dissertation]. Konstanz, Germany: Konstanz University
  • Meng Z. (1981). Studies on the structure of the adduct of andrographolide with sodium hydrogen sulphite. Yao Xue Xue Bao 16:571–5
  • Messel R. (1871). Ueber Sulfomaleïnsïure. J L Ann Chem 157:24–15
  • Michael A. (1887). Ueber die Addition von Natriumacetessig- und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. J Prakt Chem 35:349–56
  • Mika K, Okuda H, Yoshioka S, Watabe T. (1988). Covalent binding of 4-nitrobenzyl mercaptan S-sulfate to the sulfhydryl groups of hepatic cytosolic proteins and bovine serum albumin with mixed disulphide bond formation. Chem Biol Interact 68:27–38
  • Min BH, Parekh C, Goldberg L, McChesney EW. (1970). Experimental studies of sodium pyridinethione. II. Urinary excretion following topical application to rats and menkeys. Food Cosmet Toxicol 8:161–6
  • Morton M, Landfield H. (1952). Kinetics of bisulfite addition to α,β-unsaturated compounds. J Am Chem Soc 74:3523–6
  • Munk I. (1876). Zur Kenntniss der phenolbildenden Substanz im Harn. Pfluegers Arch Physiol 12:142–51
  • Nishimura Y, Iwase K. (1976). Bisulfite addition to unsaturated dibasic acid esters. Japan Patent JP51070725, 18th June 1976 (Appl. 12th December 1974) (Assignee: Japan: Takemoto Oil and Fat Co. Ltd. 3 p
  • Nissinen E, Lindén IB, Schultz E, et al. (1988). Inhibition of catechol-O-methyltransferase activity by two novel disubstituted catechols in the rat. Eur J Pharmacol 153:263–9
  • Parke DV. (1952). The metabolism of aromatic compounds, Ph.D. [thesis]. London, UK: University of London
  • Parke DV. (1960). Studies in detoxication. 84. The metabolism of [C]aniline in the rabbit and other animals. Biochem J 77:493–503
  • Pentikäinen PJ, Saraheimo M, Vuorela A, et al. (1990). Fate of nitecapone, a new catechol-O-methyltransferase inhibitor in man: a study with double isotope technique (Abstract). Clin Pharmacol Ther 47:156
  • Pugh CE, Roy AB, Hawkes T, Harwood JL. (1995). A new pathways for the synthesis of the plant sulpholipid, sulphoquinovosyldiacylglycerol. Biochem J 309:513–19
  • Rao TS, Salunke SB. (1984). Kinetics and mechanism of ketone-bisulfite addition reaction in aqueous solution. React Kinet Catal Lett 26:273–7
  • Redtenbacker J. (1848). Ueber die Constitution des Taurins und einen damit isomeren Körper. Ann Chem Pharm 65:37–43
  • Renwick AG. (1996) Sulfur-oxygen compounds. In: Mitchell SC, ed. Biological interactions of sulfur compounds. London: Taylor & Francis, 42–76
  • Robinson HC. (1965). The reduction of inorganic sulphate to inorganic sulphite in the small intestine of the rat. Biochem J 94:687–91
  • Roy AB. (1971). Sulphate conjugating enzymes. In: Brodie BB, Gillette JR, eds. Handbook of experimental pharmacology. Concepts in biochemical pharmacology. Vol. 28. Berlin: Springer-Verlag. 536–63
  • Roy AB, Trudinger PA. (1970). The biochemistry of inorganic compounds of sulphur. Cambridge: Cambridge University Press, 36–7
  • Sanda S, Leustek T, Theisen MJ, et al. (2001). Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276:3941–6
  • Schenck RTE, Danishefsky I. (1951). The addition of bisulfite to unsaturated acids and their derivatives. J Org Chem 16:1683–9
  • Schiff JA, Hodson RC. (1973). The metabolism of sulfate. Ann Rev Plant Physiol 24:381–414
  • Schmiederberg O. (1878). Ueber das Verhältniss des Ammoniaks und der primären Monoaminbasen zur Harnstoffbildung im Thierkörper. Naunnyn-Schmiedebergs Arch Exp Pathol Pharmakol 8:1–14
  • Schröder E, Eaton P. (2009). Hydrogen peroxide and cysteine protein signalling pathways. 7.7 Low molecular weight oxidized thiols and S-thiolated protein adducts. In: Jacob C, Winyard PG, eds. Redox signaling and regulation in biology and medicine. Weinheim: Wiley-VCH, 188–9 (181–95)
  • Sharma V, Sharma T, Kaul S, et al. (2016). Anticancer potential of the labdane diterpenoid lactone ‘andrographolide’ and its derivatives: a semi-synthetic approach. Phytochem Rev. [Epub ahead of print]. doi: 10.1007/s11101-016-9478-9
  • Shaw E, Bernstein J, Losee K, Lott WA. (1950). Analogs of aspergillic acid. IV. Substituted 2-bromopyridine-N-oxides and their conversion to cyclic thiohydroxamic acids. J Am Chem Soc 72:4362–4
  • Shröder H, Adam J, Taraz K, Budzikiewicz H. (1995). Dihydropyoverdinsulfonsäuren-Zwischenstufen bei der Biogenese? Zeitschrift für Naturforschung 50c:616–21
  • Singer TP, Kearney EB.(1955). Enzymatic pathways in the degradation of sulfur-containing amino acids. In: McElroy WD, Glass HB, eds. Amino acid metabolism. Baltimore: The John Hopkins Press, 558–90
  • Sykes P. (1986). A guidebook to mechanism in organic chemistry. 6th ed. Harlow: Longmans Group, 203–245
  • Taskinen J, Wikberg T, Ottoila P, et al. (1991). Identification of major metabolites of the catechol-O-methyltransferase inhibitor nitecapone in human urine. Drug Metab Dispos 19:178–93
  • Testa B, Krämer SD. (2010). The biochemistry of drug metabolism: conjugations, consequences of metabolism, influencing factors. Zurich, Switzerland: Wiley-VCH, 23–35
  • Tilley TG. (1848). Ueber oenanthol und dessen Zersetzungsprodukte. Ann Chem Pharm 67:105–15
  • Wagner C. (1929). Über die kinetik der reaktion von formaldehyd mit bisulfit und sulfit. Chem Ber 62:2873–7
  • Wagner FC, Reid EM. (1931). The stability of the carbon-sulfur bond in some aliphatic sulfonic acids. J Amer Chem Soc 53:3407–13
  • Waley SG. (1959). Acidic peptides of the lens. 5. S-sulphoglutathione. Biochem J 71:132–7
  • Wang Y, Jiang X, Jiang J, et al. (2012). Andrographolide derivatives and use thereof in manufacture of medicaments. European Patent EP 2176255 B1, 29th Feb 2012 (filed 7th Aug 2008) (Assignee; Sunnyvale (CA): Panorama Research Inc.). 37 p
  • Watabe T, Okuda H, Hiratsuka A, Miwa K. (1985). The S-sulfate formation from 4-nitrobenzyl mercaptan in rat liver cytosol. Biochem Biophys Res Commun 131:687–93
  • Watabe T, Okuda H, Hiratsuka A, Miwa K. (1986). Covalent binding of a mercaptan-S-sulfate to hepatic cytosolic proteins and its inhibition by glutathione. Biochem Biophys Res Commun 137:1055–60
  • Wedig JH, Mitoma C, Howd RA, Thomas DW. (1978). Identification of metabolites from salts of pyridine-2-thiol-1-oxide following intravenous and dermal adminstration to swine. Toxicol Appl Pharmacol 43:373–9
  • Welker M, von Döhren H. (2006). Cyanobacterial peptides - nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–63
  • White RH. (1984). Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J Bacteriol 159:42–6
  • White RH. (1985). Biosynthesis of coenzyme M (2-mercaptoethanesulfonic acid). Biochemistry 24:6487–93
  • White RH. (1986). Intermediates in the biosynthesis of coenzyme M (2-mercaptoethanesulfonic acid). Biochemistry 25:5304–8
  • Wikberg T, Taskinen T. (1993). Identification of major metabolites of the catechol-O-methyltransferase inhibitor, nitecapone, in the rat and dog. Drug Metab Dispos 21:325–33
  • Wikberg T, Vuorela A. (1994). Metabolite profiles of two [14C]-labelled catechol-O-methyltransferase inhibitore, nitecapone and entacapone, in rat and mouse urine and rat bile. Eur J Drug Metab Pharmacokinet 19:125–35
  • Williams RT. (1947). Detoxication mechanisms: the metabolism of drugs and allied organic compounds. London: Chapman & Hall Ltd., 6
  • Williams RT. (1959). Detoxication mechanisms: the metabolism and detoxication of drugs, toxic substances and other organic compounds. London: Chapman & Hall, 492
  • Yakoby-Zeevi O, Bitsaron M. (2016). Method for the treatment of Parkinson’s disease. US Patent US2016/0022573 A1, 28th Jan 2016 (filing date 13th March 2014) (Assignee: Rehovot, Israel: Neuroderm Ltd.), 22 p
  • Yoshino H, Matsunaga H, Kaneko H, et al. (1993). Metabolism of N-[4-chloro-2-fluoro-5-[(1-methyl-2-propynyl)oxy]phenyl]-3,4,5,6-tetrahydrophthalimide (S-23121) in the rat: I. Identification of a new, sulphonic acid type of conjugate. Xenobiotica 23:609–19
  • Zhu F, Dai C, Fu Y, et al. (2016). Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling. Oncotarget 7:9462–76
  • Zhu SP, Kang BA. (1981). Distribution and excretion of [35S]NaHSO3-andrographolide by autoradiography. Acta Pharmaceutica Sinica (Zhongguo Yao Li Xue Bao) 2:266–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.