Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 48, 2018 - Issue 5
1,094
Views
27
CrossRef citations to date
0
Altmetric
Topics in Xenobiochemistry

Efflux proteins at the blood–brain barrier: review and bioinformatics analysis

, , &
Pages 506-532 | Received 24 Mar 2017, Accepted 04 May 2017, Published online: 30 May 2017

References

  • Abbott NJ, Patabendige AA, Dolman DE, et al. (2010). Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25
  • Abuznait AH, Kaddoumi A. (2012). Role of ABC transporters in the pathogenesis of Alzheimer's disease. ACS Chem Neurosci 3:820–31
  • Adamsen D, Ramaekers V, Ho HT, et al. (2014). Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism 5:43
  • Agarwal S, Elmquist WF. (2012). Insight into the cooperation of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood–brain barrier: a case study examining sorafenib efflux clearance. Mol Pharm 9:678–84
  • Agarwal S, Hartz AM, Elmquist WF, et al. (2011). Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des 17:2793–802
  • Alebouyeh M, Takeda M, Onozato ML, et al. (2003). Expression of human organic anion transporters in the choroid plexus and their interactions with neurotransmitter metabolites. J Pharmacol Sci 93:430–6
  • Aller SG, Yu J, Ward A, et al. (2009). Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–22
  • Amin ML. (2013). P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 7:27–34
  • Anandan A, Vrielink A. (2016). Detergents in membrane protein purification and crystallisation. Adv Exp Med Biol 922:13–28
  • Anzai N, Kanai Y, Endou H. (2006). Organic anion transporter family: current knowledge. J Pharmacol Sci 100:411–26
  • Avdeef A. (2001). Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem 1:277–351
  • Bakhsheshian J, Wei BR, Chang KE, et al. (2013). Bioluminescent imaging of drug efflux at the blood–brain barrier mediated by the transporter ABCG2. Proc Natl Acad Sci USA 110:20801–6
  • Baldwin SA, Beal PR, Yao SY, et al. (2004). The equilibrative nucleoside transporter family, SLC29. Pflugers Arch 447:735–43
  • Bandler PE, Westlake CJ, Grant CE, et al. (2008). Identification of regions required for apical membrane localization of human multidrug resistance protein 2. Mol Pharmacol 74:9–19
  • Bartels AL, de Klerk OL, Kortekaas R, et al. (2010). 11C-verapamil to assess P-gp function in human brain during aging, depression and neurodegenerative disease. Curr Top Med Chem 10:1775–84
  • Bartels AL, Kortekaas R, Bart J, et al. (2009). Blood–brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol Aging 30:1818–24
  • Bauer M, Karch R, Neumann F, et al. (2009). Age dependency of cerebral P-gp function measured with (R)-[11C]verapamil and PET. Eur J Clin Pharmacol 65:941–6
  • Bauer M, Karch R, Zeitlinger M, et al. (2013). Interaction of 11C-tariquidar and 11C-elacridar with P-glycoprotein and breast cancer resistance protein at the human blood–brain barrier. J Nucl Med 54:1181–7
  • Bauer M, Römermann K, Karch R, et al. (2016). A pilot PET study to assess the functional interplay between ABCB1 and ABCG2 at the human blood–brain barrier. Clin Pharmacol Ther 100:131–41
  • Bayburt TH, Sligar SG. (2010). Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–7
  • Bello I, Salerno M. (2015). Evidence against a role of P-glycoprotein in the clearance of the Alzheimer's disease Aβ1-42 peptides. Cell Stress Chaperones 20:421–30
  • Bernsel A, Viklund H, Hennerdal A, et al. (2009). TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–8
  • Bill RM, Henderson PJ, Iwata S, et al. (2011). Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–40
  • Buchler M, Konig J, Brom M, et al. (1996). cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. J Biol Chem 271:15091–8
  • Burckhardt G. (2012). Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther 136:106–30
  • Cady SD, Schmidt-Rohr K, Wang J, et al. (2010). Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–92
  • Canfield SG, Stebbins MJ, Morales BS, et al. (2017). An isogenic blood–brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem 140:874–88
  • Cantore M, Benadiba M, Elsinga PH, et al. (2016). (11)C- and (18)F-labeled radioligands for P-glycoprotein imaging by positron emission tomography. ChemMedChem 11:108–18
  • Carpenter EP, Beis K, Cameron AD, Iwata S. (2008). Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–6
  • Carroni M, Saibil HR. (2016). Cryo electron microscopy to determine the structure of macromolecular complexes. Methods 95:78–85
  • Cecchelli R, Aday S, Sevin E, et al. (2014). A stable and reproducible human blood–brain barrier model derived from hematopoietic stem cells. PLoS One 9:e99733
  • Cederberg HH, Uhd NC, Brodin B. (2014). Glutamate efflux at the blood–brain barrier: cellular mechanisms and potential clinical relevance. Arch Med Res 45:639–45
  • César-Razquin A, Snijder B, Frappier-Brinton T, et al. (2015). A call for systematic research on solute carriers. Cell 162:478–87
  • Chen Y, Teranishi K, Li S, et al. (2009). Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenomics J 9:127–36
  • Cheng Y, Grigorieff N, Penczek PA, et al. (2015). A primer to single-particle cryo-electron microscopy. Cell 161:438–49
  • Cheng Z, Liu H, Yu N, et al. (2012). Hydrophilic anti-migraine triptans are substrates for OATP1A2, a transporter expressed at human blood–brain barrier. Xenobiotica 42:880–90
  • Cheng X, Maher J, Chen C, et al. (2005). Tissue distribution and ontogeny of mouse organic anion transporting polypeptides (Oatps). Drug Metab Dispos 33:1062–73
  • Chiu C, Miller MC, Monahan R, et al. (2015). P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer's disease: preliminary observations. Neurobiol Aging 36:2475–82
  • Chufan EE, Sim HM, Ambudkar SV. (2015). Molecular basis of the polyspecificity of P-glycoprotein (ABCB1): recent biochemical and structural studies. Adv Cancer Res 125:71–96
  • Cisternino S, Rousselle C, Lorico A, et al. (2003). Apparent lack of Mrp1-mediated efflux at the luminal side of mouse blood–brain barrier endothelial cells. Pharm Res 20:904–9
  • Claros MG, von Heijne G. (1994). TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–6
  • Cohen-Kashi-Malina K, Cooper I, Teichberg VI. (2012). Mechanisms of glutamate efflux at the blood–brain barrier: involvement of glial cells. J Cereb Blood Flow Metab 32:177–89
  • Cole SPC, Bhardwaj G, Gerlach JH, et al. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–4
  • Cole SP, Deeley RG. (2006). Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27:438–46
  • Columbus L. (2015). Post-expression strategies for structural investigations of membrane proteins. Curr Opin Struct Biol 32:131–8
  • Cooray HC, Blackmore CG, Maskell L, et al. (2002). Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–63
  • Cross TA, Ekanayake V, Paulino J, et al. (2014). Solid state NMR: the essential technology for helical membrane protein structural characterization. J Magn Reson 239:100–9
  • Dallas S, Schlichter L, Bendayan R. (2004). Multidrug resistance protein (MRP) 4-and MRP 5-mediated efflux of 9-(2-phosphonylmethoxyethyl)adenine by microglia. J Pharmacol Exp Ther 309:1221–9
  • Dallas S, Zhu X, Baruchel S, et al. (2003). Functional expression of the multidrug resistance protein 1 in microglia. J Pharmacol Exp Ther 307:282–90
  • Davis TP, Sanchez-Covarubias L, Tome ME. (2014). P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery. Adv Pharmacol 71:25–44
  • Dawson RJ, Locher KP. (2006). Structure of a bacterial multidrug ABC transporter. Nature 443:180–5
  • Dean M, Hamon Y, Chimini G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42:1007–17
  • Declèves X, Regina A, Laplanche JL. (2000). Functional expression of P-glycoprotein and multidrug resistance-associated protein (Mrp1) in primary cultures of rat astrocytes. J Neurosci Res 60:594–601
  • Deeley RG, Cole SP. (2006). Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 580:1103–11
  • Deo AK, Borson S, Link JM, et al. (2014). Activity of P-glycoprotein, a β-amyloid transporter at the blood–brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med 55:1106–11
  • Desai BS, Monahan AJ, Carvey PM, et al. (2007). Blood–brain barrier pathology in Alzheimer's and Parkinson's disease: implications for drug therapy. Cell Transplant 16:285–99
  • Ding X, Zhao X, Watts A. (2013). G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 450:443–57
  • Divito CB, Underhill SM. (2014). Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 73:172–80
  • Do TM, Bedussi B, Chasseigneaux S. (2013). Oatp1a4 and an L-thyroxine-sensitive transporter mediate the mouse blood–brain barrier transport of amyloid-β peptide. J Alzheimers Dis 36:555–61
  • Dobson L, Reményi I, Tusnády GE. (2015). CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res 43:W408–12
  • Doerr A. (2016). Single-particle cryo-electron microscopy. Nat Methods 13:23
  • Doyle LA, Yang W, Abruzzo LV, et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–70
  • Dürr UH, Gildenberg M, Ramamoorthy A. (2012). The magic of bicelles lights up membrane protein structure. Chem Rev 112:6054–74
  • Edwards R, Madine J, Fielding L, et al. (2010). Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site. Phys Chem Chem Phys 12:13999–4008
  • Eigenmann DE, Jähne EA, Smieško M, et al. (2016). Validation of an immortalized human (hBMEC) in vitro blood–brain barrier model. Anal Bioanal Chem 408:2095–107
  • Eisenblätter T, Galla HJ. (2002). A new multidrug resistance protein at the blood–brain barrier. Biochem Biophys Res Commun 293:1273–8
  • Elsinga PH, Hendrikse NH, Bart J, et al. (2004). PET studies on P-glycoprotein function in the blood–brain barrier: how it affects uptake and binding of drugs within the CNS?. Curr Pharm Des 10:1493–503
  • Elwi AN, Damaraju VL, Baldwin SA, et al. (2006). Renal nucleoside transporters: physiological and clinical implications. Biochem Cell Biol 84:844–58
  • Emami Riedmaier A, Nies AT, Schaeffeler E, et al. (2012). Organic anion transporters and their implications in pharmacotherapy. Pharmacol Rev 64:421–49
  • Enerson BE, Drewes LR. (2006). The rat blood–brain barrier transcriptome. J Cereb Blood Flow Metab 26:959–73
  • Engel K, Wang J. (2005). Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol Pharmacol 68:1397–407
  • Engelhardt B, Sorokin L. (2009). The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511
  • Eyal S, Ke B, Muzi M, et al. (2010). Regional P-glycoprotein activity and inhibition at the human blood–brain barrier as imaged by positron emission tomography. Clin Pharmacol Ther 87:579–85
  • Farthing CA, Sweet DH. (2014). Expression and function of organic cation and anion transporters (SLC22 family) in the CNS. Curr Pharm Des 20:1472–86
  • Galante E, Okamura T, Sander K, et al. (2014). Development of purine-derived 18F-labeled pro-drug tracers for imaging of MRP1 activity with PET. J Med Chem 57:1023–32
  • Gao B, Vavricka SR, Meier PJ, et al. (2015). Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS. Pflugers Arch 467:1481–93
  • Gao QB, Ye XF, He J. (2013). Classifying G-protein-coupled receptors to the finest subtype level. Biochem Biophys Res Commun 439:303–8
  • Gasteiger E, Hoogland C, Gattiker A, et al. (2005). Protein identification and analysis tools on the ExPASy Server. In: Walker JM, ed. The proteomics protocols handbook. Totowa, NJ: Humana Press, 571–607
  • Geier EG, Chen EC, Webb A, et al. (2013). Profiling solute carrier transporters in the human blood–brain barrier. Clin Pharmacol Ther 94:636–9
  • Golden PL, Pollack GM. (2003). Blood–brain barrier efflux transport. J Pharm Sci 92:1739–53
  • Gray MT, Woulfe JM. (2015). Striatal blood–brain barrier permeability in Parkinson's disease. J Cereb Blood Flow Metab 35:747–50
  • Grewer C, Gameiro A, Rauen T. (2014). SLC1 glutamate transporters. Pflugers Arch 466:3–24
  • Gui C, Hagenbuch B. (2008). Amino acid residues in transmembrane domain 10 of organic anion transporting polypeptide 1B3 are critical for cholecystokinin octapeptide transport. Biochemistry 47:9090–7
  • Gui C, Hagenbuch B. (2009). Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1. Protein Sci 18:2298–306
  • Hagenbuch B, Gui C. (2008). Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38:778–801
  • Hagenbuch B, Meier PJ. (2003). The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 1609:1–18
  • Hagenbuch B, Meier PJ. (2004). Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch 447:653–65
  • Hagenbuch B, Stieger B. (2013). The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 34:396–412
  • Hänggi E, Grundschober AF, Leuthold S, et al. (2006). Functional analysis of the extracellular cysteine residues in the human organic anion transporting polypeptide, OATP2B1. Mol Pharmacol 70:806–17
  • Hartz AM, Miller DS, Bauer B. (2010). Restoring blood–brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease. Mol Pharmacol 77:715–23
  • Hartz AM, Zhong Y, Wolf A, et al. (2016). Aβ40 reduces P-glycoprotein at the blood–brain barrier through the ubiquitin-proteasome pathway. J Neurosci 36:1930–41
  • Hawkins RA, O'Kane RL, Simpson IA, et al. (2006). Structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr 136:218S–26S
  • Hayashi K, Pu H, Andras IE, et al. (2006). HIV-TAT protein upregulates expression of multidrug resistance protein 1 in the blood–brain barrier. J Cereb Blood Flow Metab 26:1052–65
  • He SM, Li R, Kanwar JR, Zhou SF. (2011). Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1). Curr Med Chem 18:439–81
  • He X, Szewczyk P, Karyakin A, et al. (2010). Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–4
  • He L, Vasiliou K, Nebert DW. (2009). Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 3:195–206
  • Hediger MA, Clémençon B, Burrier RE, et al. (2013). The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med 34:95–107
  • Helms HC, Madelung R, Waagepetersen HS, et al. (2012). In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate. Glia 60:882–93
  • Hendrikse NH, Schinkel AH, de Vries EG, et al. (1998). Complete in vivo reversal of P-glycoprotein pump function in the blood–brain barrier visualized with positron emission tomography. Br J Pharmacol 124:1413–8
  • Hiasa M, Matsumoto T, Komatsu T, et al. (2006). Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. Am J Physiol Cell Physiol 291:C678–86
  • Higgins CF, Gottesman MM. (1992). Is the multidrug transporter a flippase? Trends Biochem Sci 17:18–21
  • Hiruma-Shimizu K, Shimizu H, Thompson GS, et al. (2015). Deuterated detergents for structural and functional studies of membrane proteins: properties, chemical synthesis and applications. Mol Membr Biol 32:139–55
  • Huber RD, Gao B, Sidler Pfändler MA, et al. (2007). Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292:C795–806
  • Huisman MT, Smit JW, Crommentuyn KM, et al. (2002). Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 16:2295–301
  • Jansen RS, Mahakena S, de Haas M, et al. (2015). ATP-binding cassette subfamily C member 5 (ABCC5) functions as an efflux transporter of glutamate conjugates and analogs. J Biol Chem 290:30429–40
  • Jedlitschky G, Vogelgesang S, Kroemer HK. (2010). MDR1-P-glycoprotein (ABCB1)-mediated disposition of amyloid-β peptides: implications for the pathogenesis and therapy of Alzheimer's disease. Clin Pharmacol Ther 88:441–3
  • Jensen AA, Fahlke C, Bjørn-Yoshimoto WE, et al. (2015). Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 20:116–23
  • Johnson ZL, Chen J. (2017). Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168:1075–85
  • Judge PJ, Taylor GF, Dannatt HR, et al. (2015). Solid-state nuclear magnetic resonance spectroscopy for membrane protein structure determination. Methods Mol Biol 1261:331–47
  • Juliano RL, Ling VA. (1976). Surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–62
  • Kalverda AP, Gowdy J, Thompson GS, et al. (2014). TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol Membr Biol 31:131–40
  • Kaminski WE, Piehler A, Wenzel JJ. (2006). ABC A-subfamily transporters: structure, function and disease. Biochim Biophys Acta 1762:510–24
  • Kanai Y, Clémençon B, Simonin A, et al. (2013). The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 34:108–20
  • Kang HJ, Lee C, Drew D. (2013). Breaking the barriers in membrane protein crystallography. Int J Biochem Cell Biol 45:636–44
  • Kawamura K, Yamasaki T, Yui J, et al. (2009). In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl Med Biol 36:239–46
  • Keaney J, Campbell M. (2015). The dynamic blood–brain barrier. FEBS J 282:4067–79
  • Kikuchi S, Hata M, Fukumoto K, et al. (2002). Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet 31:320–5
  • Kikuchi R, Kusuhara H, Abe T, et al. (2004). Involvement of multiple transporters in the efflux of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors across the blood–brain barrier. J Pharmacol Exp Ther 311:1147–53
  • Kikuchi R, Kusuhara H, Sugiyama D, et al. (2003). Contribution of organic anion transporter 3 (Slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood–brain barrier. J Pharmacol Exp Ther 306:51–8
  • Kikuchi T, Okamura T, Wakizaka H, et al. (2014). OAT3-mediated extrusion of the 99mTc-ECD metabolite in the mouse brain. J Cereb Blood Flow Metab 34:585–8
  • Kim RB. (2002). Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 34:47–54
  • Kim DG, Bynoe MS. (2016). A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood–brain barrier. J Clin Invest 126:1717–33
  • Kocher O, Comella N, Gilchrist A, et al. (1999). A novel PDZ domain-containing protein up-regulated in carcinomas and mapped to chromosome 1q21, interacts with cMOAT (MRP2), the multidrug resistance-associated protein. Lab Invest 79:1161–70
  • Kodaira H, Kusuhara H, Ushiki J, et al. (2010). Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333:788–96
  • König J. (2011). Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 201:1–28
  • Kool M, de Haas M, Scheffer GL, et al. (1997). Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57:3537–47
  • Krogh A, Larsson B, von Heijne G, et al. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–80
  • Kubo Y, Ohtsuki S, Uchida Y, et al. (2015). Quantitative determination of luminal and abluminal membrane distributions of transporters in porcine brain capillaries by plasma membrane fractionation and quantitative targeted proteomics. J Pharm Sci 104:3060–8
  • Kubota H, Ishihara H, Langmann T, et al. (2006). Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res 68:213–28
  • Kuhnke D, Jedlitschky G, Grube M, et al. (2007). MDR1-P-Glycoprotein (ABCB1) Mediates Transport of Alzheimer's amyloid-beta peptides – implications for the mechanisms of Abeta clearance at the blood–brain barrier. Brain Pathol 17:347–53
  • Kusuhara H, Sekine T, Utsunomiya-Tate N, et al. (1999). Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J Biol Chem 274:13675–80
  • Kusuhara H, Sugiyama Y. (2005). Active efflux across the blood–brain barrier: role of the solute carrier family. NeuroRx 2:73–85
  • Laguerre A, Löhr F, Henrich E, et al. (2016). From nanodiscs to isotropic bicelles: a procedure for solution nuclear magnetic resonance studies of detergent-sensitive integral membrane proteins. Structure 24:1830–41
  • Lakatos A, Mörs K, Glaubitz C. (2012). How to investigate interactions between membrane proteins and ligands by solid-state NMR. Methods Mol Biol 914:65–86
  • Letunic I, Bork P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–5
  • Li J, Jaimes KF, Aller SG. (2014). Refined structures of mouse P-glycoprotein. Protein Sci 23:34–46
  • Li-Blatter X, Nervi P, Seelig A. (2009). Detergents as intrinsic P-glycoprotein substrates and inhibitors. Biochim Biophys Acta 1788:2335–44
  • Lin H, Ding H. (2011). Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 269:64–9
  • Lin L, Yee SW, Kim RB, et al. (2015). SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14:543–60
  • Linton KJ. (2007). Structure and function of ABC transporters. Physiology (Bethesda) 22:122–30
  • Liou YF, Vasylenko T, Yeh CL, et al. (2015). SCMMTP: identifying and characterizing membrane transport proteins using propensity scores of dipeptides. BMC Genomics 16:S6
  • Lipinski CA, Lombardo F, Dominy BW, et al. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26
  • Liu YH, Di YM, Zhou ZW, et al. (2010). Multidrug resistance-associated proteins and implications in drug development. Clin Exp Pharmacol Physiol 37:115–20
  • Liu T, Li Q. (2014). Organic anion-transporting polypeptides: a novel approach for cancer therapy. J Drug Target 22:14–22
  • Liu L, Liu XD. (2014). Alterations in function and expression of ABC transporters at blood–brain barrier under diabetes and the clinical significances. Front Pharmacol 5:273
  • Liu H, Yu N, Lu S, et al. (2015). Solute carrier family of the organic anion-transporting polypeptides 1A2-madin-darby canine kidney II: a promising in vitro system to understand the role of organic anion-transporting polypeptide 1A2 in blood–brain barrier drug penetration. Drug Metab Dispos 43:1008–18
  • Loo TW, Clarke DM. (1999). The transmembrane domains of the human multidrug resistance P-glycoprotein are sufficient to mediate drug binding and trafficking to the cell surface. J Biol Chem 274:24759–65
  • Lopez JJ, Shukla AK, Reinhart C, et al. (2008). The structure of the neuropeptide bradykinin bound to the human G-protein coupled receptor bradykinin B2 as determined by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 47:1668–71
  • Löscher W, Potschka H. (2005). Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98
  • Lubberink M. (2016). Kinetic models for measuring P-glycoprotein function at the blood–brain barrier with positron emission tomography. Curr Pharm Des 22:5786–92
  • Luna-Munguia H, Salvamoser JD, Pascher B, et al. (2015). Glutamate-mediated upregulation of the multidrug resistance protein 2 in porcine and human brain capillaries. J Pharmacol Exp Ther 352:368–78
  • Lund H, Krakauer M, Skimminge A, et al. (2013). Blood–brain barrier permeability of normal appearing white matter in relapsing-remitting multiple sclerosis. PLoS One 8:e56375
  • Luurtsema G, Verbeek GL, Lubberink M, et al. (2010). Carbon-11 labeled tracers for in vivo imaging P-glycoprotein function: kinetics, advantages and disadvantages. Curr Top Med Chem 10:1820–33
  • Mahringer A, Ott M, Reimold I, et al. (2011). The ABC of the blood–brain barrier – regulation of drug efflux pumps. Curr Pharm Des 17:2762–70
  • Mangoni AA. (2007). The impact of advancing age on P-glycoprotein expression and activity: current knowledge and future directions. Expert Opin Drug Metab Toxicol 3:315–20
  • Mao Q, Unadkat JD. (2005). Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 7:E118–33
  • Mao Q, Unadkat JD. (2015). Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport – an update. AAPS J 17:65–82
  • Maslennikov I, Choe S. (2013). Advances in NMR structures of integral membrane proteins. Curr Opin Struct Biol 23:555–62
  • Mayerl S, Visser TJ, Darras VM, et al. (2012). Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 153:1528–37
  • McRae M. (2016). HIV and viral protein effects on the blood brain barrier. Tissue Barriers 4:e1143543
  • Middleton DA, Hughes E, Esmann M. (2011). The conformation of ATP within the Na,K-ATPase nucleotide site: a statistically constrained analysis of REDOR solid-state NMR data. Angew Chem Int Ed Engl 50:7041–4
  • Middleton DA, Patching SG. (2013). Solid-state NMR spectroscopy in drug design and discovery. In: Andrushko V, Andrushko N, eds. Stereoselective synthesis of drugs and natural products. Chichester, UK: John Wiley & Sons, Ltd (Chapter 51)
  • Miller DS. (2015a). Regulation of ABC transporters blood–brain barrier: the good, the bad, and the ugly. Adv Cancer Res 125:43–70
  • Miller DS. (2015b). Regulation of ABC transporters at the blood–brain barrier. Clin Pharmacol Ther 97:395–403
  • Mineev KS, Nadezhdin KD, Goncharuk SA, et al. (2016). Characterization of small isotropic bicelles with various compositions. Langmuir 32:6624–37
  • Minich T, Riemer J, Schulz JB, et al. (2006). The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97:373–84
  • Mishra NK, Chang J, Zhao PX. (2014). Prediction of membrane transport proteins and their substrate specificities using primary sequence information. PLoS One 9:e100278
  • Miyagawa M, Maeda K, Aoyama A, et al. (2009). The eighth and ninth transmembrane domains in organic anion transporting polypeptide 1B1 affect the transport kinetics of estrone-3-sulfate and estradiol-17β-d-glucuronide. J Pharmacol Exp Ther 329:551–7
  • Moraes I, Evans G, Sanchez-Weatherby J, et al. (2014). Membrane protein structure determination – the next generation. Biochim Biophys Acta 1838:78–87
  • Moreland JL, Gramada A, Buzko OV, et al. (2005). The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics 6:21
  • Mori S, Takanaga H, Ohtsuki S, et al. (2003). Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab 23:432–40
  • Moyer BD, Denton J, Karlson KH, et al. (1999). A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J Clin Invest 104:1353–61
  • Muzi M, Mankoff DA, Link JM, et al. (2009). Imaging of cyclosporine inhibition of P-glycoprotein activity using 11C-verapamil in the brain: studies of healthy humans. J Nucl Med 50:1267–75
  • Nakanishi T, Ross DD. (2012). Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 31:73–99
  • Ni Z, Bikadi Z, Rosenberg MF, Mao Q. (2010). Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 11:603–17
  • Nies AT, Jedlitschky G, König J, et al. (2004). Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–60
  • Nietlispach D, Gautier A. (2011). Solution NMR studies of polytopic α-helical membrane proteins. Curr Opin Struct Biol 21:497–508
  • Nigam SK, Bush KT, Martovetsky G, et al. (2015). The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 95:83–123
  • Obaidat A, Roth M, Hagenbuch B. (2012). The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol 52:135–51
  • Obermeier B, Daneman R, Ransohoff RM. (2013). Development, maintenance and disruption of the blood–brain barrier. Nat Med 19:1584–96
  • Oberoi RK, Mittapalli RK, Elmquist WF. (2013). Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther 347:755–64
  • Ohtsuki S, Asaba H, Takanaga H, et al. (2002). Role of blood–brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem 83:57–66
  • Ohtsuki S, Kikkawa T, Mori S, et al. (2004). Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. J Pharmacol Exp Ther 309:1273–81
  • Okamura T, Kikuchi T, Irie T. (2010). PET imaging of MRP1 function in the living brain: method development and future perspectives. Curr Top Med Chem 10:1810–9
  • Okamura T, Kikuchi T, Okada M, et al. (2009). Noninvasive and quantitative assessment of the function of multidrug resistance-associated protein 1 in the living brain. J Cereb Blood Flow Metab 29:504–11
  • Okura T, Kato S, Takano Y, et al. (2011). Functional characterization of rat plasma membrane monoamine transporter in the blood–brain and blood–cerebrospinal fluid barriers. J Pharm Sci 100:3924–38
  • Ose A, Ito M, Kusuhara H, et al. (2009). Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood–brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos 37:315–21
  • Ose A, Kusuhara H, Endo C, et al. (2010). Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood–brain barrier. Drug Metab Dispos 38:168–76
  • Otsuka M, Matsumoto T, Morimoto R, et al. (2005). A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci USA 102:17923–8
  • Parker JL, Newstead S. (2016). Membrane protein crystallisation: current trends and future perspectives. Adv Exp Med Biol 922:61–72
  • Patching SG. (2011). NMR structures of polytopic integral membrane proteins. Mol Membr Biol 28:370–97
  • Patching SG. (2015). Solid-state NMR structures of integral membrane proteins. Mol Membr Biol 32:156–78
  • Patching SG. (2017). Glucose transporters at the blood–brain barrier: function, regulation and gateways for drug delivery. Mol Neurobiol 54:1046–77
  • Patching SG, Henderson PJ, Herbert RB, et al. (2008). Solid-state NMR spectroscopy detects interactions between tryptophan residues of the E. coli sugar transporter GalP and the alpha-anomer of the D-glucose substrate. J Am Chem Soc 130:1236–44
  • Patching SG, Henderson PJ, Sharples DJ, et al. (2013). Probing the contacts of a low-affinity substrate with a membrane-embedded transport protein using 1H–13C cross-polarisation magic-angle spinning solid-state NMR. Mol Membr Biol 30:129–37
  • Pekcec A, Schneider EL, Baumgärtner W, et al. (2011). Age-dependent decline of blood–brain barrier P-glycoprotein expression in the canine brain. Neurobiol Aging 32:1477–85
  • Poller B, Wagenaar E, Tang SC, et al. (2011). Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood–brain barrier. Mol Pharm 8:571–82
  • Potschka H, Fedrowitz M, Löscher W. (2003). Multidrug resistance protein MRP2 contributes to blood–brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 306:124–31
  • Pottier G, Marie S, Goutal S, et al. (2016). Imaging the impact of the P-glycoprotein (ABCB1) function on the brain kinetics of metoclopramide. J Nucl Med 57:309–14
  • Privé GG. (2007). Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–97
  • Puthenveetil R, Nguyen K, Vinogradova O. (2017). Nanodiscs and solution NMR: preparation, application and challenges. Nanotechnol Rev 6:111–26
  • Qosa H, Miller DS, Pasinelli P, et al. (2015). Regulation of ABC efflux transporters at blood–brain barrier in health and neurological disorders. Brain Res 1628:298–316
  • Rahman M, Ismat F, Jiao L, et al. (2017). Characterisation of the DAACS family Escherichia coli glutamate/aspartate-proton symporter GltP using computational, chemical, biochemical and biophysical methods. J Membr Biol 250:145–62
  • Rask-Andersen M, Masuram S, Fredriksson R, et al. (2013). Solute carriers as drug targets: current use, clinical trials and prospective. Mol Aspects Med 34:702–10
  • Rawson S, Davies S, Lippiat JD, et al. (2016). The changing landscape of membrane protein structural biology through developments in electron microscopy. Mol Membr Biol 33:12–22
  • Redzic Z. (2011). Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8:3
  • Roberts LM, Black DS, Raman C, et al. (2008). Subcellular localization of transporters along the rat blood–brain barrier and blood–cerebral–spinal fluid barrier by in vivo biotinylation. Neuroscience 155:423–38
  • Roberts LM, Woodford K, Zhou M, et al. (2008). Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood–brain barrier. Endocrinology 149:6251–61
  • Robey RW, To KK, Polgar O, et al. (2009). ABCG2: a perspective. Adv Drug Deliv Rev 61:3–13
  • Römermann K, Wanek T, Bankstahl M, et al. (2013). (R)-[(11)C]verapamil is selectively transported by murine and human P-glycoprotein at the blood–brain barrier, and not by MRP1 and BCRP. Nucl Med Biol 40:873–8
  • Ronaldson PT, Finch JD, Demarco KM, et al. (2011). Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood–brain barrier. J Pharmacol Exp Ther 336:827–39
  • Rosenberg MF, Bikadi Z, Chan J, et al. (2010). The human breast cancer resistance protein (BCRP/ABCG2) shows conformational changes with mitoxantrone. Structure 18:482–93. Erratum in Structure 2010;18:1688–1689
  • Roth M, Obaidat A, Hagenbuch B. (2012). OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260–87
  • Saidijam M, Azizpour S, Patching SG. (2017a). Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction. J Biomol Struct Dyn 35:929–49
  • Saidijam M, Azizpour S, Patching SG. (2017b). Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure. J Biomol Struct Dyn [Epub ahead of print]. DOI: 10.1080/07391102.2017.1285725
  • Saidijam M, Patching SG. (2015). Amino acid composition analysis of secondary transport proteins from Escherichia coli with relation to functional classification, ligand specificity and structure. J Biomol Struct Dyn 33:2205–20
  • Saier MH Jr. (2000). Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 146:1775–95
  • Salvamoser JD, Avemary J, Luna-Munguia H, et al. (2015). Glutamate-mediated down-regulation of the multidrug-resistance protein BCRP/ABCG2 in porcine and human brain capillaries. Mol Pharm 12:2049–60
  • Sanchez-Covarrubias L, Slosky LM, Thompson BJ, et al. (2014). Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 20:1422–49
  • Sander K, Galante E, Gendron T, et al. (2015). Development of fluorine-18 labeled metabolically activated tracers for imaging of drug efflux transporters with positron emission tomography. J Med Chem 58:6058–80
  • Savolainen H, Cantore M, Colabufo NA, et al. (2015). Synthesis and preclinical evaluation of three novel fluorine-18 labeled radiopharmaceuticals for P-glycoprotein PET imaging at the blood–brain barrier. Mol Pharm 12:2265–75
  • Savolainen H, Windhorst AD, Elsinga PH, et al. (2017). Evaluation of [(18)F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood–brain barrier in rats: kinetics, metabolism, and selectivity. J Cereb Blood Flow Metab 37:1286–98
  • Schaadt NS, Helms V. (2012). Functional classification of membrane transporters and channels based on filtered TM/non-TM amino acid composition. Biopolymers 97:558–67
  • Schinkel AH. (1999). P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev 36:179–94
  • Schlessinger A, Khuri N, Giacomini KM, et al. (2013a). Molecular modeling and ligand docking for solute carrier (SLC) transporters. Curr Top Med Chem 13:843–56
  • Schlessinger A, Yee SW, Sali A, et al. (2013b). SLC classification: an update. Clin Pharmacol Ther 94:19–23
  • Shapiro AB, Corder AB, Ling V. (1997). P-Glycoprotein-mediated Hoechst 33342 transport out of the lipid bilayer. Eur J Biochem 250:115–21
  • Shawahna R. (2015). Physical and metabolic integrity of the blood–brain barrier in HIV infection: a special focus on intercellular junctions, influx and efflux transporters and metabolizing enzymes. Curr Drug Metab 16:105–23
  • Sharom FJ. (2011). The P-glycoprotein multidrug transporter. Essays Biochem 50:161–78
  • Sharom FJ. (2014). Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol 4:41
  • Sievers F, Wilm A, Dineen D, et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539
  • Silverberg GD, Messier AA, Miller MC, et al. (2010). Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J Neuropathol Exp Neurol 69:1034–43
  • Sisodiya SM, Martinian L, Scheffer GL, et al. (2006). Vascular colocalization of P-glycoprotein, multidrug-resistance associated protein 1, breast cancer resistance protein and major vault protein in human epileptogenic pathologies. Neuropathol Appl Neurobiol 32:51–63
  • Sivapackiam J, Harpstrite SE, Prior JL, et al. (2016). (67/68)Galmydar: a metalloprobe for monitoring breast cancer resistance protein (BCRP)-mediated functional transport activity. Nucl Med Biol 43:191–7
  • Slot AJ, Molinski SV, Cole SP. (2011). Mammalian multidrug-resistance proteins (MRPs). Essays Biochem 50:179–207
  • Smith SM. (2017). Strategies for the purification of membrane proteins. Methods Mol Biol 1485:389–400
  • Sonoda Y, Cameron A, Newstead S, et al. (2010). Tricks of the trade used to accelerate high-resolution structure determination of membrane proteins. FEBS Lett 584:2539–47
  • Soontornmalai A, Vlaming ML, Fritschy JM. (2006). Differential, strain-specific cellular and subcellular distribution of multidrug transporters in murine choroid plexus and blood–brain barrier. Neuroscience 138:159–69
  • Stark H, Chari A. (2016). Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Microscopy (Oxf) 65:23–34
  • Staud F, Cerveny L, Ahmadimoghaddam D, et al. (2013). Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int J Biochem Cell Biol 45:2007–11
  • Stefková J, Poledne R, Hubácek JA. (2004). ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 53:235–43
  • Sugiyama D, Kusuhara H, Taniguchi H, et al. (2003). Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood–brain barrier: high affinity transporter for thyroxine. J Biol Chem 278:43489–95
  • Suzuki T, Fukami T, Tomono K. (2015). Possible involvement of cationic-drug sensitive transport systems in the blood-to-brain influx and brain-to-blood efflux of amantadine across the blood–brain barrier. Biopharm Drug Dispos 36:126–37
  • Svoboda M, Riha J, Wlcek K, et al. (2011). Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab 12:139–53
  • Syvänen S, Eriksson J. (2013). Advances in PET imaging of P-glycoprotein function at the blood–brain barrier. ACS Chem Neurosci 4:225–37
  • Taniguchi K, Wada M, Kohno K, et al. (1996). A human canalicular multispecific organic anion transporter (CMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Res 56:4124–9
  • Tapaneeyakorn S, Goddard AD, Oates J, et al. (2011). Solution- and solid-state NMR studies of GPCRs and their ligands. Biochim Biophys Acta 1808:1462–75
  • Tarling EJ, de Aguiar Vallim TQ, Edwards PA. (2013). Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 24:342–50
  • Tate CG. (2010). Practical considerations of membrane protein instability during purification and crystallisation. Methods Mol Biol 601:187–203
  • Theodoulou FL, Kerr ID. (2015). ABC transporter research: going strong 40 years on. Biochem Soc Trans 43:1033–40
  • Thompson BJ, Sanchez-Covarrubias L, Slosky LM, et al. (2014). Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood–brain barrier: relevance to CNS drug delivery. J Cereb Blood Flow Metab 34:699–707
  • Thompson RF, Walker M, Siebert CA, et al. (2016). An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15
  • Tohyama K, Kusuhara H, Sugiyama Y. (2004). Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood–brain barrier. Endocrinology 145:4384–91
  • Toornvliet R, van Berckel BN, Luurtsema G, et al. (2006). Effect of age on functional P-glycoprotein in the blood–brain barrier measured by use of (R)-[(11)C]verapamil and positron emission tomography. Clin Pharmacol Ther 79:540–8
  • Tsirigos KD, Hennerdal A, Käll L, et al. (2012). A guideline to proteome-wide α-helical membrane protein topology predictions. Proteomics 12:2282–94
  • Tsirigos KD, Peters C, Shu N, et al. (2015). The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43:W401–7
  • Uchida Y, Ohtsuki S, Katsukura Y, et al. (2011). Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem 117:333–45
  • van Assema DM, Lubberink M, Bauer M, et al. (2012). Blood–brain barrier P-glycoprotein function in Alzheimer's disease. Brain 135:181–9
  • van Assema DM, Lubberink M, Boellaard R, et al. (2012). P-Glycoprotein function at the blood–brain barrier: effects of age and gender. Mol Imaging Biol 14:771–6
  • Van de Bittner GC, Ricq EL, Hooker JM. (2014). A philosophy for CNS radiotracer design. Acc Chem Res 47:3127–34
  • van de Haar HJ, Burgmans S, Jansen JF, et al. (2016). Blood–brain barrier leakage in patients with early Alzheimer disease. Radiology 281:527–35
  • van Montfoort JE, Hagenbuch B, Groothius GMM, et al. (2003). Drug uptake systems in liver and kidney. Curr Drug Metab 4:185–211
  • Vasiliou V, Vasiliou K, Nebert DW. (2009). Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3:281–90
  • Verardi R, Traaseth NJ, Masterson LR, et al. (2012). Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. Adv Exp Med Biol 992:35–62
  • Vlaming ML, Läppchen T, Jansen HT, et al. (2015). PET-CT imaging with [(18)F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug-drug interactions at the murine blood–brain barrier. Nucl Med Biol 42:833–41
  • Vogelgesang S, Jedlitschky G, Brenn A, et al. (2011). The role of the ATP-binding cassette transporter P-glycoprotein in the transport of β-amyloid across the blood–brain barrier. Curr Pharm Des 17:2778–86
  • von Heijne G. (1992). Membrane protein structure prediction: hydrophobicity analysis and the 'positive inside' rule. J Mol Biol 225:487–94
  • Wanek T, Kuntner C, Bankstahl JP, et al. (2012). A novel PET protocol for visualization of breast cancer resistance protein function at the blood–brain barrier. J Cereb Blood Flow Metab 32:2002–11
  • Wanek T, Mairinger S, Langer O. (2013). Radioligands targeting P-glycoprotein and other drug efflux proteins at the blood–brain barrier. J Labelled Comp Radiopharm 56:68–77
  • Wang YI, Abaci HE, Shuler ML. (2017). Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng 114:184–94
  • Wang W, Bodles-Brakhop AM, Barger SW. (2016). A role for P-glycoprotein in clearance of Alzheimer amyloid β-peptide from the brain. Curr Alzheimer Res 13:615–20
  • Wang C, Lin W, Playa H, et al. (2013). Dipyridamole analogs as pharmacological inhibitors of equilibrative nucleoside transporters. Identification of novel potent and selective inhibitors of the adenosine transporter function of human equilibrative nucleoside transporter 4 (hENT4). Biochem Pharmacol 86:1531–40
  • Wang P, Wang JJ, Xiao Y, et al. (2005). Interaction with PDZK1 is required for expression of organic anion transporting protein 1A1 on the hepatocyte surface. J Biol Chem 280:30143–9
  • Ward A, Reyes CL, Yu J, et al. (2007). Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104:19005–10
  • Warren MS, Zerangue N, Woodford K, et al. (2009). Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 59:404–13
  • Warschawski DE, Arnold AA, Beaugrand M, et al. (2011). Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808:1957–74
  • Watts A. (2005). Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat Rev Drug Discov 4:555–68
  • Westholm DE, Salo DR, Viken KJ, et al. (2009). The blood–brain barrier thyroxine transporter organic anion-transporting polypeptide 1c1 displays atypical transport kinetics. Endocrinology 150:5153–62
  • Westlake CJ, Cole SP, Deeley RG. (2005). Role of the NH2-terminal membrane spanning domain of multidrug resistance protein 1/ABCC1 in protein processing and trafficking. Mol Biol Cell 16:2483–92
  • Whittaker CA, Patching SG, Esmann M, et al. (2015). Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement. Org Biomol Chem 13:2664–8
  • Williamson PTF. (2009). Solid-state NMR for the analysis of high-affinity ligand/receptor interactions. Concept Magn Reson A 34A:144–72
  • Williamson PT, Verhoeven A, Miller KW, et al. (2007). The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 104:18031–6
  • Willyerd FA, Empey PE, Philbrick A. (2016). Expression of ATP-binding cassette transporters B1 and C1 after severe traumatic brain injury in humans. J Neurotrauma 33:226–31
  • Wong AD, Ye M, Levy AF, et al. (2013). The blood–brain barrier: an engineering perspective. Front Neuroeng 6:7
  • Wu KC, Lu YH, Peng YH, et al. (2015). Effects of lipopolysaccharide on the expression of plasma membrane monoamine transporter (PMAT) at the blood–brain barrier and its implications to the transport of neurotoxins. J Neurochem 135:1178–88
  • Yamasaki T, Fujinaga M, Kawamura K, et al. (2011). Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of 11C-labeled topotecan using small-animal positron emission tomography. Nucl Med Biol 38:707–14
  • Yang Y, Mo W, Zhang JT. (2010). Role of transmembrane segment 5 and extracellular loop 3 in the homodimerization of human ABCC1. Biochemistry 49:10854–61
  • Young JD, Yao SY, Sun L, et al. (2008). Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 38:995–1021
  • Zhang DW, Cole SP, Deeley RG. (2002). Determinants of the substrate specificity of multidrug resistance protein 1: role of amino acid residues with hydrogen bonding potential in predicted transmembrane helix 17. J Biol Chem 277:20934–41
  • Zhang Y, Han H, Elmquist WF, et al. (2000). Expression of various multidrug resistance-associated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res 876:148–53
  • Zhang X, He X, Baker J, et al. (2012). Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein. J Biol Chem 287:27971–82
  • Zhang Y, Schuetz JD, Elmquist WF, et al. (2004). Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 311:449–55
  • Zhang J, Sun T, Liang L, et al. (2014). Drug promiscuity of P-glycoprotein and its mechanism of interaction with paclitaxel and doxorubicin. Soft Matter 10:438–45
  • Zhang X, Wright SH. (2009). MATE1 has an external COOH terminus, consistent with a 13-helix topology. Am J Physiol Renal Physiol 297:F263–71
  • Zhang W, Xiong H, Callaghan D, et al. (2013). Blood–brain barrier transport of amyloid beta peptides in efflux pump knock-out animals evaluated by in vivo optical imaging. Fluids Barriers CNS 10:13
  • Zheng J, Chan T, Cheung FS, et al. (2014). PDZK1 and NHERF1 regulate the function of human organic anion transporting polypeptide 1A2 (OATP1A2) by modulating its subcellular trafficking and stability. PLoS One 9:e94712
  • Zhou F, Lee AC, Krafczyk K, et al. (2011). Protein kinase C regulates the internalization and function of the human organic anion transporting polypeptide 1A2. Br J Pharmacol 162:1380–8
  • Zhou SF, Wang LL, Di YM, et al. (2008). Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15:1981–2039
  • Zhou M, Xia L, Engel K, Wang J. (2007). Molecular determinants of substrate selectivity of a novel organic cation transporter (PMAT) in the SLC29 family. J Biol Chem 282:3188–95
  • Zhou F, You G. (2007). Molecular insights into the structure-function relationship of organic anion transporters OATs. Pharm Res 24:28–36
  • Zia-Ur-Rehman, Khan A. (2012). Identifying GPCRs and their types with Chou's pseudo amino acid composition: an approach from multi-scale energy representation and position specific scoring matrix. Protein Peptide Lett 19:890–903
  • Zia-Ur-Rehman, Mirza MT, Khan A, et al. (2013). Predicting G-protein-coupled receptors families using different physiochemical properties and pseudo amino acid composition. Methods Enzymol 522:61–79
  • Zlokovic BV. (2008). The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201
  • Zoonens M, Popot JL. (2014). Amphipols for each season. J Membr Biol 247:759–96

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.