Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 5
336
Views
6
CrossRef citations to date
0
Altmetric
Topics in Xenobiochemistry

Pharmacokinetic alterations in poloxamer 407-induced hyperlipidemic rats

, &
Pages 611-625 | Received 04 Mar 2018, Accepted 14 Apr 2018, Published online: 08 May 2018

References

  • Abd Rahman AN, Tett SE, Staatz CE. (2013). Clinical pharmacokinetics and pharmacodynamics of mycophenolate in patients with autoimmune disease. Clin Pharmacokinet 52:303–31.
  • Abendroth D. (2004). Experience with therapeutic drug monitoring of cyclosporine. Transplant Proc 36:429S.
  • Ahn CY, Bae SK, Jung YS, et al. (2008). Pharmacokinetic parameters of chlorzoxazone and its main metabolite, 6-hydroxychlorzoxazone, after intravenous and oral administration of chlorzoxazone to liver cirrhotic rats with diabetes mellitus. Drug Metab Dispos 36:1233–41.
  • Aliabadi HM, Spencer TJ, Mahdipoor P, et al. (2006). Insights into the effects of hyperlipoproteinemia on cyclosporine A biodistribution and relationship to renal function. AAPS J 8:672.
  • Anger GJ, Piquette-Miller M. (2010). Impact of hyperlipidemia on plasma protein binding and hepatic drug transporter and metabolic enzyme regulation in a rat model of gestational diabetes. J Pharmacol Exp Ther 334:21–32.
  • Bellucci G, Berti G, Chiappe C, et al. (1987). The metabolism of carbamazepine in humans: steric course of the enzymatic hydrolysis of the 10,11-epoxide. J Med Chem 30:768–73.
  • Benet LZ, Hoener BA. (2002). Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 71:115–21.
  • Blonder JM, Baird L, Fulfs JC, Rosenthal GJ. (1999). Dose-dependent hyperlipidemia in rabbits following administration of poloxamer 407 gel. Life Sci 65:6.
  • Bohdanecká M, Schück O, Chadimová M, Kunes J. (1999). Cyclosporin A nephrotoxicity in rats with genetically fixed hypertriglyceridemia. Nephron 82:188–9.
  • Brocks DR. (2000). Stereoselective pharmacokinetics of desbutylhalofantrine, a metabolite of halofantrine, in the rat after administration of the racemic metabolite or parent drug. Biopharm Drug Dispos 21:365–71.
  • Brocks DR, Ala S, Aliabadi HM. (2006). The effect of increased lipoprotein levels on the pharmacokinetics of cyclosporine A in the laboratory rat. Biopharm Drug Dispos 27:7–16.
  • Brocks DR, Chaudhary HR, Ben-Eltriki M, et al. (2014). Effects of serum lipoproteins on cyclosporine A cellular uptake and renal toxicity in vitro. Can J Physiol Pharmacol 92:140–8.
  • Brocks DR, Hamdy DA, Ben-Eltriki M, et al. (2013). Effect of rat serum lipoproteins on mRNA levels and amiodarone metabolism by cultured primary rat hepatocytes. J Pharm Sci 102:262–70.
  • Brocks DR, Wasan KM. (2002). The influence of lipids on stereoselective pharmacokinetics of halofantrine: Important implications in food-effect studies involving drugs that bind to lipoproteins. J Pharm Sci 91:1817–26.
  • Brunner LJ, Vadiei K, Luke DR. (1988). Cyclosporine disposition in the hyperlipidemic rat model. Res Commun Chem Pathol Pharmacol 59:339–48.
  • Bullingham RE, Nicholls A, Hale M. (1996). Pharmacokinetics of mycophenolate mofetil (RS61443): a short review. Transplant Proc 28:925–9.
  • Choi YH, Kim SG, Lee MG. (2006). Dose-independent pharmacokinetics of metformin in rats: hepatic and gastrointestinal first-pass effects. J Pharm Sci 95:2543–52.
  • Choi MR, Kwon MH, Cho YY, et al. (2014). Pharmacokinetics of tolbutamide and its metabolite 4-hydroxy tolbutamide in poloxamer 407-induced hyperlipidemic rats. Biopharm Drug Dispos 35:264–74.
  • Choi YH, Yoon I, Kim YG, Lee MG. (2012). Effects of cysteine on the pharmacokinetics of docetaxel in rats with protein-calorie malnutrition. Xenobiotica 42:442–55.
  • Chung NS, Wasan KM. (2004). Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv Drug Deliv Rev 56:1315–34.
  • Cicero AFG, Bove M, Borghi C. (2018). Pharmacokinetics, pharmacodynamics and clinical efficacy of non-statin treatments for hypercholesterolemia. Expert Opin Drug Metab Toxicol 14:9–15.
  • Conney AH, Burns JJ. (1960). Physiological disposition and metabolic fate of chlorzoxazone (paraflex) in man. J Pharmacol Exp Ther 128:340–3.
  • Danon A, Chen Z. (1979). Binding of imipramine to plasma proteins: effect of hyperlipoproteinemia. Clin Pharmacol Ther 25:316–21.
  • Davies B, Morris T. (1993). Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–5.
  • Dennison JB, Kulanthaivel P, Barbuch RJ, et al. (2006). Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab Dispos 34:1317–27.
  • Dorian P. (2010). Clinical pharmacology of dronedarone: implications for the therapy of atrial fibrillation. J Cardiovasc Pharmacol Ther 15:8S.
  • Eliot LA, Foster RT, Jamali F. (1999). Effects of hyperlipidemia on the pharmacokinetics of nifedipine in the rat. Pharm Res 16:309–13.
  • Eliot LA, Jamali F. (1999). Pharmacokinetics and pharmacodynamics of nifedipine in untreated and atorvastatin-treated hyperlipidemic rats. J Pharmacol Exp Ther 291:188–93.
  • Eloranta JJ, Meier PJ, Kullak-Ublick GA. (2005). Coordinate transcriptional regulation of transport and metabolism. Meth Enzymol 400:511–30.
  • Elsherbiny ME, El-Kadi AO, Brocks DR. (2008). The metabolism of amiodarone by various CYP isoenzymes of human and rat, and the inhibitory influence of ketoconazole. J Pharm Pharm Sci 11:147–59.
  • Fardel O, Payen L, Courtois A, et al. (2001). Regulation of biliary drug efflux pump expression by hormones and xenobiotics. Toxicology 167:37–46.
  • Fitch WL, Tran T, Young M, et al. (2009). Revisiting the metabolism of ketoconazole using accurate mass. Drug Metab Lett 3:191–8.
  • Fukushima K, Shibata M, Mizuhara K, et al. (2009). Effect of serum lipids on the pharmacokinetics of atazanavir in hyperlipidemic rats. Biomed Pharmacother 63:635–42.
  • Gabr RQ, El-Sherbeni AA, Ben-Eltriki M, et al. (2017). Pharmacokinetics of metformin in the rat: assessment of the effect of hyperlipidemia and evidence for its metabolism to guanylurea. Can J Physiol Pharmacol 95:530–8.
  • Gao JW, Peng ZH, Li XY, et al. (2011). Simultaneous determination of mycophenolic acid and its metabolites by HPLC and pharmacokinetic studies in rat plasma and bile. Arch Pharm Res 34:59–69.
  • Gardier AM, Mathé D, Guédeney X, et al. (1993). Ther Drug Monit 15:274–80.
  • Gharavi N, Sattari S, Shayeganpour A, et al. (2007). The stereoselective metabolism of halofantrine to desbutylhalofantrine in the rat: evidence of tissue-specific enantioselectivity in microsomal metabolism. Chirality 19:22–33.
  • Ghosal A, Hapangama N, Yuan Y, et al. (2004). Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil). Drug Metab Dispos 32:267–71.
  • Grundy JS, Eliot LA, Foster RT. (1997). Extrahepatic first-pass metabolism of nifedipine in the rat. Biopharm Drug Dispos 18:509–22.
  • Guengerich FP, Martin MV, Beaune PH, et al. (1986). Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J Biol Chem 261:5051–60.
  • Hamdy DA, Brocks DR. (2009). Experimental hyperlipidemia causes an increase in the electrocardiographic changes associated with amiodarone. J Cardiovasc Pharmacol 53:1–8.
  • Hamdy DA, Brocks DR. (2011a). The effect of increased lipoprotein levels on the pharmacokinetics of ketoconazole enantiomers in the rat. Xenobiotica 41:137–43.
  • Hamdy DA, Brocks DR. (2011b). Effect of hyperlipidemia on ketoconazole-midazolam drug-drug interaction in rat. J Pharm Sci 100:4986–92.
  • Hanada K, Ikemi Y, Kukita K, et al. (2008). Stereoselective first-pass metabolism of verapamil in the small intestine and liver in rats. Drug Metab Dispos 36:2037–42.
  • Higashikawa F, Murakami T, Kaneda T, Takano M. (1999). In-vivo and in-vitro metabolic clearance of midazolam, a cytochrome P450 3A substrate, by the liver under normal and increased enzyme activity in rats. J Pharm Pharmacol 51:405–10.
  • Hirani VN, Raucy JL, Lasker JM. (2004). Conversion of the HIV protease inhibitor nelfinavir to a bioactive metabolite by human liver CYP2C19. Drug Metab Dispos 32:1462–7.
  • Hu N, Xie S, Liu L, et al. (2011). Opposite effect of diabetes mellitus induced by streptozotocin on oral and intravenous pharmacokinetics of verapamil in rats. Drug Metab Dispos 39:419–25.
  • Humberstone AJ, Porter CJ, Edwards GA, Charman WN. (1998). Association of halofantrine with postprandially derived plasma lipoproteins decreases its clearance relative to administration in the fasted state. J Pharm Sci 87:936–42.
  • Humbert H, Vernillet L, Cabiac MD, et al. (1990). Influence of different parameters for the monitoring of cyclosporine. Transplant Proc 22:1210–5.
  • Jardan YA, Brocks DR. (2016). The pharmacokinetics of dronedarone in normolipidemic and hyperlipidemic rats. Biopharm Drug Dispos 37:345–51.
  • Jiang ZG, Mukamal K, Tapper E, et al. (2014). Low LDL-C and high HDL-C levels are associated with elevated serum transaminases amongst adults in the United States: a cross-sectional study. PLoS One 9:e85366.
  • Johnson TJ, Porhomayon J, Nader ND, et al. (2016). Hyperlipidemia sink for anesthetic agents. 34:436–8.
  • Johnston TP. (2004). The P-407-induced murine model of dose-controlled hyperlipidemia and atherosclerosis: a review of findings to date. J Cardiovasc Pharmacol 43:595–606.
  • Johnston TP, Baker JC, Jamal AS, et al. (1999). Potential downregulation of HMG-CoA reductase after prolonged administration of P-407 in C57BL/6 mice. J Cardiovasc Pharmacol 34:831–42.
  • Johnston TP, Palmer WK. (1993). Mechanism of poloxamer 407-induced hypertriglyceridemia in the rat. Biochem Pharmacol 46:1037–42.
  • Johnston TP, Waxman DJ. (2008). Circulating free fatty acids are increased independently of PPARgamma activity after administration of poloxamer 407 to mice. Can J Physiol Pharmacol 86:643–9.
  • Kast HR, Goodwin B, Tarr PT, et al. (2002). Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277:2908–15.
  • Kerr BM, Thummel KE, Wurden CJ, et al. (1994). Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 47:1969–79.
  • Khalil HA, Belal TS, El-Yazbi AF, Hamdy DA. (2016a). The effect of increased lipoproteins levels on the disposition of vincristine in rat. Lipids Health Dis 15:152.
  • Khalil HA, ElKhatib MAW, Belal TS, et al. (2017). Hyperlipidemia alters the pharmacokinetics of posaconazole and vincristine upon co-administration in rats. Drugs R D 17:287–96.
  • Khalil HA, Elnaggar MM, Belal TS, et al. (2016b). The effect of hyperlipidemia on the pharmacokinetics, hepatic and pulmonary uptake of posaconazole in rat. Eur J Pharm Sci 91:190–5.
  • Kim MS, Wang S, Shen Z, et al. (2004). Differences in the pharmacokinetics of peroxisome proliferator-activated receptor agonists in genetically obese Zucker and sprague-dawley rats: implications of decreased glucuronidation in obese Zucker rats. Drug Metab Dispos 32:909–14.
  • Kimura Y, Kioka N, Kato H, et al. (2007). Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol. Biochem J 401:597–605.
  • Kimura N, Masuda S, Tanihara Y, et al. (2005). Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–86.
  • Kobuchi S, Fukushima K, Aoyama H, et al. (2013). Effects of oxidative stress on the pharmacokinetics and hepatic metabolism of atazanavir in rats. Free Radic Res 47:291–300.
  • Kobuchi S, Fukushima K, Shibata M, et al. (2011). Pharmacokinetics of clomipramine, an antidepressant, in poloxamer 407-induced hyperlipidaemic model rats. J Pharm Pharmacol 63:515–23.
  • Korolenko TA, Johnston TP, Tuzikov FV, et al. (2016). Early-stage atherosclerosis in poloxamer 407-induced hyperlipidemic mice: pathological features and changes in the lipid composition of serum lipoprotein fractions and subfractions. Lipids Health Dis 15:16.
  • Krieter P, Flannery B, Musick T, et al. (2004). Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob Agents Chemother 48:3543–51.
  • Kwon MH, Lee CJ, Cho YY, Kang HE. (2013). Pharmacokinetics of a cytochrome P450 2E1 probe, chlorzoxazone, and its 6-hydroxy metabolite in poloxamer 407-induced hyperlipidemic rats. J Pharm Pharm Sci 16:648–56.
  • Kwon MH, Yoon JN, Baek YJ, et al. (2016). Effects of poloxamer 407-induced hyperlipidemia on hepatic multidrug resistance protein 2 (Mrp2/Abcc2) and the pharmacokinetics of mycophenolic acid in rats. Biopharm Drug Dispos 37:352–65.
  • Kwong TC, Sparks JD, Sparks CE. (1985). Lipoprotein and protein binding of the calcium channel blocker diltiazem. Proc Soc Exp Biol Med 178:313–16.
  • Lai Y. (2009). Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion. Expert Opin Drug Metab Toxicol 5:1175–87.
  • Lee MG, Chiou WL. (1983). Evaluation of potential causes for the incomplete bioavailability of furosemide: gastric first-pass metabolism. J Pharmacokinet Biopharm 11:623–40.
  • Lee YS, Kim YW, Kim SG, et al. (2012a). Effects of poloxamer 407-induced hyperlipidemia on the pharmacokinetics of carbamazepine and its 10,11-epoxide metabolite in rats: Impact of decreased expression of both CYP3A1/2 and microsomal epoxide hydrolase. Eur Neuropsychopharmacol 22:431–40.
  • Lee JH, Oh JH, Lee YJ. (2011). Effects of experimental hyperlipidaemia on the pharmacokinetics of docetaxel in rats. Xenobiotica 41:797–804.
  • Lee JH, Oh JH, Lee YJ. (2012c). Effects of experimental hyperlipidemia on the pharmacokinetics of tadalafil in rats. J Pharm Pharm Sci 15:528–37.
  • Lee YS, Yoon JN, Yoon IS, et al. (2012b). Pharmacokinetics of verapamil and its metabolite norverapamil in rats with hyperlipidaemia induced by poloxamer 407. Xenobiotica 42:766–74.
  • Leon C, Wasan KM, Sachs-Barrable K, Johnston TP. (2006). Acute P-407 administration to mice causes hypercholesterolemia by inducing cholesterolgenesis and down-regulating low-density lipoprotein receptor expression. Pharm Res 23:1597–607.
  • Li C, Palmer WK, Johnston TP. (1996). Disposition of poloxamer 407 in rats following a single intraperitoneal injection assessed using a simplified colorimetric assay. J Pharm Biomed Anal 14:659–65.
  • Lindholm A, Kahan BD. (1993). Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther 54:205–18.
  • Ma YR, Huang J, Shao YY, et al. (2015). Inhibitory effect of atenolol on urinary excretion of metformin via down-regulating multidrug and toxin extrusion protein 1 (rMate1) expression in the kidney of rats. Eur J Pharm Sci 68:18–26.
  • Madariaga YG, Cárdenas MB, Irsula MT, et al. (2015). Assessment of four experimental models of hyperlipidemia. Lab Anim (NY) 44:135–40.
  • Marre F, Sanderink GJ, de Sousa G, et al. (1996). Hepatic biotransformation of docetaxel (Taxotere) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 56:1296–302.
  • Martignoni M, Groothuis GM, de Kanter R. (2006). Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–94.
  • Mehvar R, Vuppugalla R. (2006). Hepatic disposition of the cytochrome P450 2E1 marker chlorzoxazone and its hydroxylated metabolite in isolated perfused rat livers. J Pharm Sci 95:1414–24.
  • Meng X, Mojaverian P, Doedee M, et al. (2001). Bioavailability of amiodarone tablets administered with and without food in healthy subjects. Am J Cardiol 87:432–5.
  • Miles KK, Stern ST, Smith PC, et al. (2005). An investigation of human and rat liver microsomal mycophenolic acid glucuronidation: evidence for a principal role of UGT1A enzymes and species differences in UGT1A specificity. Drug Metab Dispos 33:1513–20.
  • Milton KA, Edwards G, Ward SA, et al. (1989). Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacol 28:71–7.
  • Mitruka BM, Rawnsley HM. (1981) Clinical biochemical and hematological reference values in normal experimental animals and normal humans. Masson Publishing USA, New York.
  • Moore J, Smith JH. (2007). A case of resistance to anesthesia secondary to severe hyperlipidemia. Pediatr Anesth 17:1223–5.
  • Moore JT, Kliewer SA. (2000). Use of the nuclear receptor PXR to predict drug interactions. Toxicology 153:1–10.
  • Naccarelli GV, Wolbrette DL, Dell’Orfano JT, et al. (2000). Amiodarone: what have we learned from clinical trials? Clin Cardiol 23:73–82.
  • Nelson RH. (2013). Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40:195–211.
  • Nemunaitis J, Deeg HJ, Yee GC. (1986). High cyclosporin levels after bone marrow transplantation associated with hypertriglyceridaemia. Lancet 2:744–5.
  • Nomeir AA, Kumari P, Hilbert MJ, et al. (2000). Pharmacokinetics of SCH 56592, a new azole broad-spectrum antifungal agent, in mice, rats, rabbits, dogs, and cynomolgus monkeys. Antimicrob Agents Chemother 44:727–31.
  • Omari-Siaw E, Wang Q, Sun C, et al. (2016). Tissue distribution and enhanced in vivo anti-hyperlipidemic-antioxidant effects of perillaldehyde-loaded liposomal nanoformulation against Poloxamer 407-induced hyperlipidemia. Int J Pharm 513:68–77.
  • Pai VB, Nahata MC. (1999). Nelfinavir mesylate: a protease inhibitor. Ann Pharmacother 33:325–39.
  • Paine MF, Shen DD, Kunze KL, et al. (1996). First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 60:14–24.
  • Palmer WK, Emeson EE, Johnston TP. (1997). The poloxamer 407-induced hyperlipidemic atherogenic animal model. Med Sci Sports Exerc 29:1416–21.
  • Palmer WK, Emeson EE, Johnston TP. (1998). Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis 136:115–23.
  • Panesar SK, Bandiera SM, Abbott FS. (1996). Comparative effects of carbamazepine and carbamazepine-10,11-epoxide on hepatic cytochromes P450 in the rat. Drug Metab Dispos 24:619–27.
  • Parker AJ, Houston JB. (2008). Rate-limiting steps in hepatic drug clearance: comparison of hepatocellular uptake and metabolism with microsomal metabolism of saquinavir, nelfinavir, and ritonavir. Drug Metab Dispos 36:1375–84.
  • Patel JP, Brocks DR. (2009). The effect of oral lipids and circulating lipoproteins on the metabolism of drugs. Expert Opin Drug Metab Toxicol 5:1385–98.
  • Patel JP, Fleischer JG, Wasan KM, Brocks DR. (2009). The effect of experimental hyperlipidemia on the stereoselective tissue distribution, lipoprotein association and microsomal metabolism of (+/-)-halofantrine. J Pharm Sci 98:2516–28.
  • Patel JP, Hamdy DA, El-Kadi AO, Brocks DR. (2012). Effect of serum lipoproteins on stereoselective halofantrine metabolism by rat hepatocytes. Chirality 24:558–65.
  • Pec EA, Wout ZG, Johnston TP. (1992). Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat. J Pharm Sci 81:626–30.
  • Perloff ES, Duan SX, Skolnik PR, et al. (2005). Atazanavir: effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab Dispos 33:764–70.
  • Peteherych KD, Wasan KM. (2001). Effects of lipoproteins on cyclosporine A toxicity and uptake in LLC-PK1 pig kidney cells. J Pharm Sci 90:1395–406.
  • Peter R, Bocker R, Beaune PH, et al. (1990). Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1. Chem Res Toxicol 3:566–73.
  • Prueksaritanont T, Koike M, Hoener BA, Benet LZ. (1992). Transport and metabolism of cyclosporine in isolated rat hepatocytes. The effects of lipids. Biochem Pharmacol 43:1997–2006.
  • Qiu W, Jiang XH, Liu CX, et al. (2009). Effect of berberine on the pharmacokinetics of substrates of CYP3A and P-gp. Phytother Res 23:1553–8.
  • Raasch RH. (1988). Hyperlipidemia. In: Young YL, Koda-Kimble MA, eds. Applied Therapeutics, the Clinical Use of Drugs. Ann Arbor: Edwards Brothers, 1743–60.
  • Rane A, Shand DG, Wilkinson GR. (1977b). Disposition of carbamazepine and its 10,11-epoxide metabolite in the isolated perfused rat liver. Drug Metab Dispos 5:179–84.
  • Rane A, Wilkinson GR, Shand DG. (1977a). Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance. J Pharmacol Exp Ther 200:420–4.
  • Ring BJ, Gillespie JS, Mullen JH, Wrighton SA. (2004). Identification of the human cytochrome P450 (CYP) responsible fot the formation of the major oxidative metabolite of tadalafil (Cialis). Drug Metab Rev 36:70.
  • Riva E, Gerna M, Neyroz P, et al. (1982). Pharmacokinetics of amiodarone in rats. J Cardiovasc Pharmacol 4:270–5.
  • Rockich K, Blouin R. (1999). Effect of the acute-phase response on the pharmacokinetics of chlorzoxazone and cytochrome P-450 2E1 in vitro activity in rats. Drug Metab Dispos 27:1074–7.
  • Rosenkranz H, Schlossmann K, Scholtan W. (1974). The binding of 4-(2'-nitrophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester (nifedipine) as well as other coronary active substances to serum albumins. Arzneimittelforschung 24:455–66.
  • Sansone-Parsons A, Krishna G, Simon J, et al. (2007). Effects of age, gender, and race/ethnicity on the pharmacokinetics of posaconazole in healthy volunteers. Antimicrob Agents Chemother 51:495–502.
  • Schary WL, Rowland M. (1983). Protein binding and hepatic clearance: studies with tolbutamide, a drug of low intrinsic clearance, in the isolated perfused rat liver preparation. J Pharmacokinet Biopharm 11:225–43.
  • Seyedmousavi S, Mouton JW, Melchers WJ, Verweij PE. (2015). Posaconazole prophylaxis in experimental azole-resistant invasive pulmonary aspergillosis. Antimicrob Agents Chemother 59:1487–94.
  • Shayeganpour A, El KAO, Brocks DR. (2006). Determination of the enzyme(s) involved in the metabolism of amiodarone in liver and intestine of rat: the contribution of cytochrome P450 3A isoforms. Drug Metab Dispos 34:43–50.
  • Shayeganpour A, Jun AS, Brocks DR. (2005). Pharmacokinetics of amiodarone in hyperlipidemic and simulated high fat-meal rat models. Biopharm Drug Dispos 26:249–57.
  • Shayeganpour A, Korashy H, Patel JP, et al. (2008). The impact of experimental hyperlipidemia on the distribution and metabolism of amiodarone in rat. Int J Pharm 361:78–86.
  • Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH. (1998). Preclinical pharmacokinetics of paclitaxel and docetaxel. Anticancer Drugs 9:1–17.
  • Staatz CE, Tett SE. (2007). Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 46:13–58.
  • Sugioka N, Haraya K, Maeda Y, et al. (2009). Pharmacokinetics of human immunodeficiency virus protease inhibitor, nelfinavir, in poloxamer 407-induced hyperlipidemic model rats. Biol Pharm Bull 32:269–75.
  • Sugioka N, Sato K, Haraya K, et al. (2008). Effect of streptozotocin-induced diabetes mellitus on the pharmacokinetics of nelfinavir in rats. Biopharm Drug Dispos 29:469–79.
  • Taha DA, Zgair A, Lee JB, et al. (2017). Hyperlipidaemia alone and in combination with acidosis can increase the incidence and severity of statin-induced myotoxicity. Eur J Pharm Sci 100:163–75.
  • Thummel KE, O'Shea D, Paine MF, et al. (1996). Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 59:491–502.
  • Tiebel O, Oka K, Robinson K, et al. (1999). Mouse very low-density lipoprotein receptor (VLDLR): gene structure, tissue-specific expression and dietary and developmental regulation. Atherosclerosis 145:239–51.
  • Tybring G, von Bahr C, Bertilsson L, et al. (1981). Metabolism of carbamazepine and its epoxide metabolite in human and rat liver in vitro. Drug Metab Dispos 9:561–4.
  • Ueda CT, Lemaire M, Gsell G, et al. (1984). Apparent dose-dependent oral absorption of cyclosporin A in rats. Biopharm Drug Dispos 5:141–51.
  • Urien S. (1986). Interaction of drugs with human plasma lipoproteins. In: Tillement JP, Lindenlaub E, eds. Proceedings of the Symposium on Protein Binding and Drug Transport. F.K. Schattauer Verlag, Stuttgart/New York, pp. 63–75.
  • Vallner JJ. (1977). Binding of drugs by albumin and plasma protein. J Pharm Sci 66:447–65.
  • Valoti M, Frosini M, Palmi M, et al. (1998). N-Dealkylation of chlorimipramine and chlorpromazine by rat liver microsomal cytochrome P450 isoenzymes. J Pharm Pharmacol 50:1005–11.
  • Varma MV, Panchagnula R. (2005). Prediction of in vivo intestinal absorption enhancement on P-glycoprotein inhibition, from rat in situ permeability. J Pharm Sci 94:1694–704.
  • Wagner O, Schreier E, Heitz F, Maurer G. (1987). Tissue distribution, disposition, and metabolism of cyclosporine in rats. Drug Metab Dispos 15:377–83.
  • Wang X, Lee WY, Or PM, Yeung JH. (2010). Pharmacokinetic interaction studies of tanshinones with tolbutamide, a model CYP2C11 probe substrate, using liver microsomes, primary hepatocytes and in vivo in the rat. Phytomedicine 17:203–11.
  • Wasan KM, Brocks DR, Lee SD, et al. (2008). Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov 7:84–99.
  • Wasan KM, Conklin JS. (1997). Enhanced amphotericin B nephrotoxicity in intensive care patients with elevated levels of low-density lipoprotein cholesterol. Clin Infect Dis 24:78–80.
  • Watanabe T, Miyauchi S, Sawada Y, et al. (1992). Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver. Possible roles of P-glycoprotein in biliary excretion of vincristine. J Hepatol 16:77–88.
  • Westley IS, Brogan LR, Morris RG, et al. (2006). Role of Mrp2 in the hepatic disposition of mycophenolic acid and its glucuronide metabolites: effect of cyclosporine. Drug Metab Dispos 34:261–6.
  • Wilkinson GR, Shand DG. (1975). Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther 18:377–90.
  • Wout ZG, Pec EA, Maggiore JA, et al. (1992). Poloxamer 407-mediated changes in plasma cholesterol and triglycerides following intraperitoneal injection to rats. J Parenter Sci Technol 46:192–200.
  • Wyss PA, Moor MJ, Bickel MH. (1990). Single-dose kinetics of tissue distribution, excretion and metabolism of amiodarone in rats. J Pharmacol Exp Ther 254:502–7.
  • Yoo SD, Yoon BM, Lee HS, Lee KC. (1999). Increased bioavailability of clomipramine after sublingual administration in rats. J Pharm Sci 88:1119–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.