Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 5
447
Views
5
CrossRef citations to date
0
Altmetric
Xenobiotic Transporters

Unremarkable impact of Oatp inhibition on the liver concentration of fluvastatin, lovastatin and pitavastatin in wild-type and Oatp1a/1b knockout mouse

, , , , , & show all
Pages 602-610 | Received 16 Mar 2018, Accepted 15 May 2018, Published online: 06 Jun 2018

References

  • Chang JH, Ly J, Plise E, et al. (2014). Differential effects of Rifampin and Ketoconazole on the blood and liver concentration of atorvastatin in wild-type and Cyp3a and Oatp1a/b knockout mice. Drug Metab Dispos 42:1067–73.
  • Choi MK, Shin HJ, Choi YL, et al. (2011). Differential effect of genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (Oatp1B1) on the uptake of HMG-CoA reductase inhibitors. Xenobiotica 41:24–34.
  • Deng JW, Song IS, Shin HJ, et al. (2008). The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics 18:424–33.
  • Fattinger K, Cattori V, Hagenbuch B, et al. (2000). Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology 32:82–6.
  • Fischer V, Johanson L, Heitz F, et al. (1999). The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions. Drug Metab Dispos 27:410–6.
  • Halpin RA, Ulm EH, Till AE, et al. (1993). Biotransformation of lovastatin. V. Species differences in in vivo metabolite profiles of mouse, rat, dog, and human. Drug Metab Dispos 21:1003–11.
  • Higgins JW, Bao JQ, Ke AB, et al. (2014). Utility of Oatp1a/1b-knockout and Oatp1B1/3-humanized mice in the study of Oatp-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein. Drug Metab Dispos 42:182–92.
  • Hirano M, Maeda K, Shitara Y, Sugiyama Y. (2004). Contribution of Oatp2 (Oatp1B1) and Oatp8 (Oatp1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther 311:139–46.
  • Hirano M, Maeda K, Shitara Y, Sugiyama Y. (2006). Drug–drug interaction between pitavastatin and various drugs via Oatp1B1. Drug Metab Dispos 34:1229–36.
  • Igel M, Arnold KA, Niemi M, et al. (2006). Impact of the SLCO1B1 polymorphism on the pharmacokinetics and lipid-lowering efficacy of multiple-dose pravastatin. Clin Pharmacol Ther 79:419–26.
  • Iusuf D, Sparidans RW, Van Esch A, et al. (2012). Organic anion-transporting polypeptides 1a/1b control the hepatic uptake of pravastatin in mice. Mol Pharm 9:2497–504.
  • Iusuf D, Van Esch A, Hobbs M, et al. (2013). Murine Oatp1a/1b uptake transporters control rosuvastatin systemic exposure without affecting its apparent liver exposure. Mol Pharmacol 83:919–29.
  • Kajinami K, Mabuchi H, Saito Y. (2000). NK-104: a novel synthetic HMG-CoA reductase inhibitor. Expert Opin Investig Drugs 9:2653–61.
  • Kunze A, Huwyler J, Camenisch G, Poller B. (2014). Prediction of organic anion-transporting polypeptide 1B1- and 1B3-mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab Dispos 42:1514–21.
  • Kusuhara H, Sugiyama Y. (2010). Pharmacokinetic modeling of the hepatobiliary transport mediated by cooperation of uptake and efflux transporters. Drug Metab Rev 42:539–50.
  • Lau YY, Huang Y, Frassetto L, Benet LZ. (2007). Effect of Oatp1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther 81:194–204.
  • Maeda K, Ikeda Y, Fujita T, et al. (2011). Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther 90:575–81.
  • Niemi M, Pasanen MK, Neuvonen PJ. (2006). SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther 80:356–66.
  • Niemi M, Schaeffeler E, Lang T, et al. (2004). High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (Oatp-C, SLCO1B1). Pharmacogenetics 14:429–40.
  • Noe J, Portmann R, Brun ME, Funk C. (2007). Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (Oatp) substrates on Oatp1B1, Oatp2B1, and Oatp1B3. Drug Metab Dispos 35:1308–14.
  • Oballa RM, Belair L, Black WC, et al. (2011). Development of a liver-targeted stearoyl-CoA desaturase (SCD) inhibitor (MK-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia. J Med Chem 54:5082–96.
  • Pasanen MK, Miettinen TA, Gylling H, et al. (2008). Polymorphism of the hepatic influx transporter organic anion transporting polypeptide 1B1 is associated with increased cholesterol synthesis rate. Pharmacogenet Genomics 18:921–6.
  • Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. (2006). SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 16:873–9.
  • Pedersen JM, Khan EK, Bergstrom CaS, et al. (2017). Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2). Eur J Pharm Sci 103:70–6.
  • Pfefferkorn JA, Guzman-Perez A, Litchfield J, et al. (2012). Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotini c acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus. J Med Chem 55:1318–33.
  • Prueksaritanont T, Chu X, Evers R, et al. (2014). Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin. Br J Clin Pharmacol 78:587–98.
  • Rose RH, Neuhoff S, Abduljalil K, et al. (2014). Application of a physiologically based pharmacokinetic model to predict Oatp1B1-related variability in pharmacodynamics of rosuvastatin. CPT Pharmacometrics Syst Pharmacol 3:e124.
  • Salphati L, Chu X, Chen L, et al. (2014). Evaluation of organic anion transporting polypeptide 1B1 and 1B3 humanized mice as a translational model to study the pharmacokinetics of statins. Drug Metab Dispos 42:1301–13.
  • Tachibana-Iimori R, Tabara Y, Kusuhara H, et al. (2004). Effect of genetic polymorphism of Oatp-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 19:375–80.
  • Te Brake LH, Russel FG, Van Den Heuvel JJ, et al. (2016). Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis 96:150–7.
  • Thompson JF, Man M, Johnson KJ, et al. (2005). An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J 5:352–8.
  • Tsamandouras N, Dickinson G, Guo Y, et al. (2015). Development and application of a mechanistic pharmacokinetic model for simvastatin and its active metabolite simvastatin acid using an integrated population PBPK approach. Pharm Res 32:1864–83.
  • Tse FL, Jaffe JM, Troendle A. (1992). Pharmacokinetics of fluvastatin after single and multiple doses in normal volunteers. J Clin Pharmacol 32:630–8.
  • Tu M, Mathiowetz AM, Pfefferkorn JA, et al. (2013). Medicinal chemistry design principles for liver targeting through Oatp transporters. Curr Top Med Chem 13:857–66.
  • Van De Steeg E, Wagenaar E, Van Der Kruijssen CM, et al. (2010). Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest 120:2942–52.
  • Varma MV, Gardner I, Steyn SJ, et al. (2012). pH-Dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm 9:1199–212.
  • Varma MV, Steyn SJ, Allerton C, El-Kattan AF. (2015). Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm Res 32:3785–802.
  • Wang RW, Kari PH, Lu AY, et al. (1991). Biotransformation of lovastatin. IV. Identification of cytochrome P450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch Biochem Biophys 290:355–61.
  • Watanabe T, Kusuhara H, Maeda K, et al. (2009). Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 328:652–62.
  • Watanabe T, Kusuhara H, Maeda K, et al. (2010). Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38:215–22.
  • Wilson A, Kim R. (2014). Oatp transporters: potential targets for enhancing organ and tissue specific drug delivery. J Pharmacol Clin Toxicol 2:1037.
  • Wu CY, Benet LZ. (2005). Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23.
  • Wu HF, Hristeva N, Chang J, et al. (2017). Rosuvastatin pharmacokinetics in Asian and White subjects wild type for both Oatp1B1 and BCRP under control and inhibited conditions. J Pharm Sci 106:2751–7.
  • Yamazaki M, Akiyama S, Nishigaki R, Sugiyama Y. (1996). Uptake is the rate-limiting step in the overall hepatic elimination of pravastatin at steady-state in rats. Pharm Res 13:1559–64.
  • Yamazaki M, Suzuki H, Hanano M, et al. (1993). Na(+)-independent multispecific anion transporter mediates active transport of pravastatin into rat liver. Am J Physiol 264:G36–44.
  • Zamek-Gliszczynski MJ, Kalvass JC, Pollack GM, Brouwer KL. (2009). Relationship between drug/metabolite exposure and impairment of excretory transport function. Drug Metab Dispos 37:386–90.
  • Zhang W, Chen BL, Ozdemir V, et al. (2007). SLCO1B1 521T–>C functional genetic polymorphism and lipid-lowering efficacy of multiple-dose pravastatin in Chinese coronary heart disease patients. Br J Clin Pharmacol 64:346–52.
  • Zhou J, Xu J, Huang Z, Wang M. (2015). Transporter-mediated tissue targeting of therapeutic molecules in drug discovery. Bioorg Med Chem Lett 25:993–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.