Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 7
354
Views
9
CrossRef citations to date
0
Altmetric
Topics in Xenobiochemistry

The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes – a literature-based review

ORCID Icon, , &
Pages 863-876 | Received 14 Jun 2018, Accepted 18 Jul 2018, Published online: 12 Sep 2018

References

  • Evelyn A, Mannick S, Sermon PA. 2002. Unusual carbon-based nanofibers and chains among diesel-emitted particles. Nano Lett 3:63–64.
  • Adeyemi OS, Sulaiman FA. (2015). Evaluation of metal nanoparticles for drug delivery systems. J Biomed Res 29:145–9.
  • Afshari A, Matson U, Ekberg LE. (2005). Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air 15:141–50.
  • Al-Hadi AM, Periasamy VS, Athinarayanan J, Alshatwi AA. (2016). The presence of carbon nanostructures in bakery products induces metabolic stress in human mesenchymal stem cells through CYP1A and p53 gene expression. Environ Toxicol Pharmacol 41:103–12.
  • Albano E. (2008). Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol Aspects Med 29:9–16.
  • Alshatwi AA, Periasamy VS, Subash-Babu P, et al. (2013). CYP1A and POR gene mediated mitochondrial membrane damage induced by carbon nanoparticle in human mesenchymal stem cells. Environ Toxicol Pharmacol 36:215–22.
  • Balasubramanian SK, Jittiwat J, Manikandan J, et al. (2010). Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–42.
  • Bebianno MJ, Gonzalez-Rey M, Gomes T, et al. (2015). Is gene transcription in mussel gills altered after exposure to Ag nanoparticles? Environ Sci Pollut Res 22:17425–33.
  • Van Berlo D, Albrecht C, Knaapen AM, et al. (2010). Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain. Arch Toxicol 84:553–62.
  • Bhogale A, Patel N, Sarpotdar P, et al. (2013). Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy. Colloid Surf B: Biointerface 102:257–64.
  • Brewer CT, Chen T. (2016). PXR variants: the impact on drug metabolism and therapeutic responses. Acta Pharm Sin B 6:441–9.
  • Brown PK, Qureshi AT, Moll AN, et al. (2013). Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS Nano 7:2948–59.
  • Capdevila JH, Falck JR, Harris RC. (2000). Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 41:163–81.
  • Chae YJ, Pham CH, Lee J, et al. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94:320–7.
  • Chen J, Glaus C, Laforest R, et al. (2010). Gold nanocages as photothermal transducers for cancer treatment. Small 6:811–7.
  • Chen YL, Peng HC, Tan SW, et al. (2013). Amelioration of ethanol-induced liver injury in rats by nanogold flakes. Alcohol 47:467–72.
  • Choi K, Riviere JE, Monteiro-Riviere NA. (2017). Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology 11:64–75.
  • Christen V, Fent K. (2012). Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere 87:423–34.
  • Connolly M, Fernández M, Conde E, et al. (2016). Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 51–552:334–43.
  • Cornu R, Rougier N, Pellequer Y, et al. (2018). Interspecies differences in the Cytochrome P450: activity of hepatocytes exposed to PLGA and silica nanoparticles: an in vitro and in vivo investigation. Nanoscale 10:5171–5181.
  • Cr W, P C, Ej P, Vs S. (2017). Combined silver nanoparticles and temperature effects in the cape river crab Potamanautes perlatus - interactions between chemical and climatic stressors. J Nanomater Mol Nanotechnol 6:2.
  • Cui Y, Gong X, Duan Y, et al. (2010). Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles. J Hazard Mater 183:874–80.
  • Degger N, Tse ACK, Wu RSS. (2015). Silver nanoparticles disrupt regulation of steroidogenesis in fish ovarian cells. Aquat Toxicol 169:143–51.
  • Delfino RJ, Sioutas C, Malik S. (2005). Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspect 113:934–46.
  • Dobias J, Bernier-Latmani R. (2013). Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47:4140–6.
  • Dragoni S, Franco G, Regoli M, et al. (2012). Gold nanoparticles uptake and cytotoxicity assessed on rat liver precision-cut slices. Toxicol Sci 128:186–97.
  • El-Sayed R, Bhattacharya K, Gu Z, et al. (2016). Single-walled carbon nanotubes inhibit the cytochrome P450 enzyme, CYP3A4. Sci Rep 6:12.
  • Falfushynska H, Gnatyshyna L, Fedoruk O, et al. (2016). Endocrine activities and cellular stress responses in the marsh frog Pelophylax ridibundus exposed to cobalt, zinc and their organic nanocomplexes. Aquat Toxicol 170:62–71.
  • Falfushynska H, Gnatyshyna L, Horyn O, et al. (2017). Endocrine and cellular stress effects of zinc oxide nanoparticles and nifedipine in marsh frogs Pelophylax ridibundus. Aquat Toxicol 185:171–82.
  • Fröhlich E. (2013). Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr Drug Metab 14:976–88.
  • Fröhlich E, Kueznik T, Samberger C, et al. (2010). Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol 242:326–32.
  • Galkin O, Vekilov PG. (2004). Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. J Mol Biol 336:43–59.
  • Garshick E, Laden F, Hart JE, et al. (2004). Lung cancer in railroad workers exposed to diesel exhaust. Environ Health Perspect 112:1539–43.
  • Gharbi N, Pressac M, Hadchouel M, et al. (2005). [60]Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–85.
  • Gilbert LI, Warren JT. 2005. A molecular genetic approach to the biosynthesis of the insect steroid molting hormone. Vitam Horm 73:31–57.
  • Guittard E, Blais C, Maria A, et al. (2011). CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev Biol 349:35–45.
  • Hassan HHAM, El-Banna SG, Elhusseiny AF, Mansour ESME. (2012). Antioxidant activity of new aramide nanoparticles containing redox-active N-phthaloyl valine moieties in the hepatic cytochrome P450system in male rats. Molecules 17:8255–75.
  • Ho CC, Lee HL, Chen CY, et al. (2017). Involvement of the cytokine–IDO1–AhR loop in zinc oxide nanoparticle-induced acute pulmonary inflammation. Nanotoxicology 11:360–70.
  • Hodges RE, Minich DM. (2015). Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J Nutr Metab 2015:1.
  • Hu JS, Li FC, Xu KZ, et al. (2016). Mechanisms of TiO2 NPs-induced phoxim metabolism in silkworm (Bombyx mori) fat body. Pestic Biochem Physiol 129:89–94.
  • Imai S, Yoshioka Y, Morishita Y, et al. (2014). Size and surface modification of amorphous silica particles determine their effects on the activity of human CYP3A4 in vitro. Nanoscale Res Lett 9:651–7.
  • Ioannides C, Lewis DFV. (2004). Cytochromes P450 in the bioactivation of chemicals. Curr Top Med Chem 4:1767–88.
  • Isobe H, Tomita N, Jinno S, et al. (2001). Synthesis and transfection capability of multi-functionalized fullerene polyamine. Chem Lett 30:1214–5.
  • Izak-Nau E, Voetz M, Eiden S, et al. (2013). Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation. Part Fibre Toxicol 10:56.
  • Jeevanandam J, Barhoum A, Chan YS, et al. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–74.
  • Jia F, Sun Z, Yan X, et al. (2014). Effect of pubertal nano-TiO2 exposure on testosterone synthesis and spermatogenesis in mice. Arch Toxicol 88:781–8.
  • Jurašin DD, Ćurlin M, Capjak I, et al. (2016). Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein J Nanotechnol 7:246–62.
  • Kenyon C. (1988). The nematode Caenorhabditis elegans. Science 240:1448–53.
  • Kim B, Kim H, Yu IJ. (2014). Assessment of nanoparticle exposure in nanosilica handling process: including characteristics of nanoparticles leaking from a vacuum cleaner. Ind Health 52:152–62.
  • Kim S, Choi JE, Choi J, et al. (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol Vitro 23:1076–84.
  • Koo EH, Lansbury PT, Kelly JW. (1999). Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA 96:9989–90.
  • Krippendorff BF, Lienau P, Reichel A, Huisinga W. (2007). Optimizing classification of drug-drug interaction potential for CYP450 isoenzyme inhibition assays in early drug discovery. J Biomol Screen 12:92–9.
  • Kulthong K, Maniratanachote R, Kobayashi Y, et al. (2012). Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica 42:854–62.
  • Kuznetsova GP, Larina OV, Petushkova NA, et al. (2014). Effects of fullerene C60 on proteomic profile of Danio rerio fish embryos. Bull Exp Biol Med 156:694–8.
  • Lai JCK, Lai MB, Jandhyam S, et al. (2008). Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts. Int J Nanomed 3:533–45.
  • Lamb JG, Hathaway LB, Munger MA, et al. (2010). Nanosilver particle effects on drug metabolism in vitro. Drug Metab Dispos 38:2246–51.
  • Lanone S, Boczkowski J. (2006). Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–63.
  • Lewis NA, Williams TD, Chipman JK. (2006). Functional analysis of a metal response element in the regulatory region of flounder cytochrome P450 1A and implications for environmental monitoring of pollutants. Toxicol Sci 92:387–93.
  • Li C, Li X, Jigami J, et al. (2012). Effect of nanoparticle-rich diesel exhaust on testosterone biosynthesis in adult male mice. Inhal Toxicol 24:599–608.
  • Li C, Li X, Suzuki AK, et al. (2013). Effects of exposure to nanoparticle-rich diesel exhaust on pregnancy in rats. J Reprod Dev 59:145–50.
  • Li F, Gu Z, Wang B, et al. (2014). Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. J Chem Ecol 40:913–22.
  • Li JJ, Zou L, Hartono D, et al. (2008). Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 20:138–42.
  • Link V, Shevchenko A, Heisenberg CP. (2006). Proteomics of early zebrafish embryos. BMC Dev Biol 6:1.
  • Lu H, Gui Y, Zheng L, Liu X. (2013). Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50:121–8.
  • Lu HJ, Gui Y, Guo T, et al. (2015). Effect of the particle size of cellulose from sweet potato residues on lipid metabolism and cecal conditions in ovariectomized rats. Food Funct 6:1185–93.
  • ManuGarcia T, Costa G, Franca L, Hofmann MC. (2013). Sub-acute intravenous administration of silver nanoparticles in male mice alters Leydig cell function and testosterone levels. Reprod Toxicol 31:1713–23.
  • Marambio-Jones C, Hoek EMV. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–51.
  • Marchesan S, Da Ros T, Spalluto G, et al. (2005). Anti-HIV properties of cationic fullerene derivatives. Bioorg Med Chem Lett 15:3615–8.
  • Maselli V, Siciliano A, Giorgio A, et al. (2017). Multigenerational effects and DNA alterations of QDs-indolicidin on Daphnia magna. Environ Pollut 224:597–605.
  • Mehta BB, Tiwari A, Sharma S, et al. (2018). Amelioration of collagen antibody induced arthritis in mice by an antibody directed against the fibronectin type III repeats of tenascin-C. Int Immunopharmacol 58:15–23.
  • Mirzaei M, Razi M, Sadrkhanlou R. (2017). Nanosilver particles increase follicular atresia: correlation with oxidative stress and aromatization. Environ Toxicol 32:2244–55.
  • Moustafa EM, Mohamed MA, Thabet NM. (2017). Gallium nanoparticle-mediated reduction of brain specific serine protease-4 in an experimental metastatic cancer model. Asian Pac J Cancer Prev 18:895–903.
  • Murphy G, Rouse RL, Polk WW, et al. (2008). Combustion-derived hydrocarbons localize to lipid droplets in respiratory cells. Am J Respir Cell Mol Biol 38:532–40.
  • Nemmar A, Vanbilloen H, Hoylaerts MF, et al. (2001). Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–8.
  • Ning Z, Cheung CS, Fu J, et al. (2006). Experimental study of environmental tobacco smoke particles under actual indoor environment. Sci Total Environ 367:822–30.
  • Ollikainen E, Liu D, Kallio A, et al. (2017). The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. Eur J Pharm Sci 104:124–32.
  • Payne AH, Hales DB. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25:947–70.
  • Pelkonen O, Turpeinen M, Hakkola J, et al. (2008). Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 82:667–715.
  • Periasamy VS, Athinarayanan J, Al-Hadi AM, et al. (2015a). Effects of titanium dioxide nanoparticles isolated from confectionery products on the metabolic stress pathway in human lung fibroblast cells. Arch Environ Contam Toxicol 68:521–33.
  • Periasamy VS, Athinarayanan J, Al-Hadi AM, et al. (2015b). Identification of titanium dioxide nanoparticles in food products: induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells. Environ Toxicol Pharmacol 39:176–86.
  • Poynton HC, Lazorchak JM, Impellitteri CA, et al. (2011). Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45:762–8.
  • Ramdhan DH, Ito Y, Yanagiba Y, et al. (2009). Nanoparticle-rich diesel exhaust may disrupt testosterone biosynthesis and metabolism via growth hormone. Toxicol Lett 191:103–8.
  • Rathore R, Schramm KW. (2014). Ethoxyresorufin-O-deethylase (EROD) activity modulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,3’,4,4’,5-pentachlorobiphenyl (PCB 126) in the presence of aqueous suspensions of nano-C60. ATLA Altern Lab Anim 42:71–80.
  • Reed RB, Ladner DA, Higgins CP, et al. (2012). Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–9.
  • Reichert K, Menzel R. (2005). Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. Chemosphere 61:229–37.
  • Rocheleau S, Arbour M, Elias M, et al. (2015). Toxicogenomic effects of nano- and bulk-TiO2 particles in the soil nematode Caenorhabditis elegans. Nanotoxicology 9:502–12.
  • Rouse RL, Murphy G, Boudreaux MJ, et al. (2008). Soot nanoparticles promote biotransformation, oxidative stress, and inflammation in murine lungs. Am J Respir Cell Mol Biol 39:198–207.
  • Schuler MA. (1996). The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol 112:1411–9.
  • Sereemaspun A, Hongpiticharoen P, Rojanathanes R, et al. (2008). Inhibition of human CYP by metallic nanoparticles: a preliminary to nanogenomics.pdf. Int J Pharmacol 4:492–5.
  • Shi H, Magaye R, Castranova V, Zhao J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15.
  • Sierra MI, Valdés A, Fernández AF, et al. (2016). The effect of exposure to nanoparticles and nanomaterials on the mammalian epigenome. Int J Nanomed 11:6297–306.
  • Silkworth JB, Koganti A, Illouz K, et al. (2005). Comparison of TCDD and PCB CYP1A induction sensitivities in fresh hepatocytes from human donors, Sprague-Dawley rats, and rhesus monkeys and HepG2 cells. Toxicol Sci 87:508–19.
  • Simon V, Avet C, Grange-Messent V, et al. (2017). Carbon black nanoparticles inhibit aromatase expression and estradiol secretion in human granulosa cells through the ERK1/2 pathway. Endocrinology 158:3200–11.
  • Smith DA, Dickins M, Fahmi OA, et al. (2007). The time to move cytochrome P450 induction into mainstream pharmacology is long overdue. Drug Metab Dispos 35:697–8.
  • Stoeger T, Reinhard C, Takenaka S, et al. (2005). Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114:328–33.
  • Stoeger T, Takenaka S, Frankenberger B, et al. (2009). Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds. Environ Health Perspect 117:54–60.
  • Sung JH, Ji JH, Yoon JU, et al. (2008). Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–74.
  • Tan BH, Pan Y, Dong AN, Ong CE. (2017). In vitro and in silico approaches to study cytochrome P450-mediated interactions. J Pharm Pharm Sci 20:319–28.
  • Tang HQ, Xu M, Rong Q, et al. (2016). The effect of ZnO nanoparticles on liver function in rats. Int J Nanomed 11:4275–85.
  • Tian JH, Xue B, Hu JH, et al. (2017). Exogenous substances regulate silkworm fat body protein synthesis through MAPK and PI3K/Akt signaling pathways. Chemosphere 171:202–7.
  • Tse ACK, Lau KYT, Ge W, Wu RSS. (2013). A rapid screening test for endocrine disrupting chemicals using primary cell culture of the marine medaka. Aquat Toxicol 144–145:50–8.
  • Vannuccini ML, Grassi G, Leaver MJ, Corsi I. (2015). Combination effects of nano-TiO and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. Comp Biochem Physiol C: Toxicol Pharmacol 176–177:71–8.
  • Wan OW, Chung KKK. (2012). The role of alpha-synuclein oligomerization and aggregation in cellular and animal models of Parkinson’s disease. PLoS One 7:e38545.
  • Wang L, Su M, Zhao X, et al. (2015). Nanoparticulate TiO protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure. Arch Environ Contam Toxicol 68:534–42.
  • Warisnoich W, Hongpitich P, Lawanprase S. (2011). Alteration in enzymatic function of human cytochrome P450 by silver nanoparticles. Res J Environ Toxicol 5:58.
  • Xie J, Dong W, Liu R, et al. (2018). Research on the hepatotoxicity mechanism of citrate-modified silver nanoparticles based on metabolomics and proteomics. Nanotoxicology 12:18–31.
  • Yang J, Luo M, Tan Z, et al. (2017). Oral administration of nano-titanium dioxide particle disrupts hepatic metabolic functions in a mouse model. Environ Toxicol Pharmacol 49:112–8.
  • Ye M, Tang L, Luo M, et al. (2014). Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations. Nanoscale Res Lett 9:642–16.
  • Zakharian TY, Seryshev A, Sitharaman B, et al. (2005). A fullerene − paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 127:12508–9.
  • Zeng Y, Kurokawa Y, Win-Shwe TT, et al. (2016). Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J Toxicol Sci 41:351–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.