Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 7
169
Views
5
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Computational and experimental studies on the interaction between butyrylcholinesterase and fluoxetine: implications in health and disease

, , , & ORCID Icon
Pages 803-810 | Received 23 May 2018, Accepted 26 Jul 2018, Published online: 29 Nov 2018

References

  • Allderdice PW, Gardner HA, Galutira D, et al. (1991). The cloned butyrylcholinesterase (BChE) gene maps to a single chromosome site, 3q26. Genomics 11:452–4.
  • Bajda M, Więckowska A, Hebda M, et al. (2013). Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 14:5608–32.
  • Bartolini M, Bertucci C, Cavrini V, Andrisano V. (2003). beta-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies . Biochem Pharmacol 65:407–16.
  • Berman HM, Westbrook J, Feng Z, et al. (2000). The Protein Data Bank. Nucleic Acids Res 28:235–42.
  • Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54.
  • Brimijoin S, Chen VP, Pang YP, et al. (2016). Physiological roles for butyrylcholinesterase: a BChE-ghrelin axis. Chem Biol Interact 259:271–5.
  • Browne SP, Slaughter EA, Couch RA, et al. (1998). The influence of plasma butyrylcholinesterase concentration on the in vitro hydrolysis of cocaine in human plasma. Biopharm Drug Dispos 19:309–14.
  • Chatonnet A, Lockridge O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260:625–34.
  • Çokugras AN. (2003). Butyrylcholinesterase: structure and physiological importance. Turk J Biochem 28:54–61.
  • Darreh-Shori T, Soininen H. (2010). Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Curr Alzheimer Res 7:67–73.
  • Darvesh S, Hopkins DA. (2003). Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol 463:25–43.
  • Dave KR, Syal AR, Katyare SS. (2000). Tissue cholinesterases. A comparative study of their kinetic properties. Z Naturforsch C Biosci 55:100–8.
  • Davies P, Maloney AJ. (1976). Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403.
  • De Vriese C, Gregoire F, Lema-Kisoka R, et al. (2004). Ghrelin degradation by serum and tissue homogenates: Identification of the cleavage sites. Endocrinology 145:4997–5005.
  • Ecobichon DJ, Comeau AM. (1973). Pseudocholinesterase of mammalian plasma: Physicochemical properties and organophosphate inhibition in eleven species. Toxicol Appl Pharmacol 24:92–100.
  • Ellman GL, Courtney KD, Andres V, Featherstone RM. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95.
  • Francis PT, Palmer AM, Snape M, Wilcock GK. (1999). The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–47.
  • Fuller RW, Snoddy HD, Krushinski JH, Robertson DW. (1992). Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo. Neuropharmacology 31:997–1000.
  • Gomez-Ramos P, Moran MA. (1997). Ultrastructural localization of butyrylcholinesterase in senile plaques in the brains of aged and Alzheimer’s disease patients. Mol Chem Neuropathol 30:161–73.
  • Gram LF. (1994). Fluoxetine. N. Engl. J. Med 331:1354–61.
  • Guillozet A, Smiley JF, Mash DC, Mesulam MM. (1997). Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol 42:909–18.
  • Inestrosa NC, Alvarez A, Pérez CA, et al. (1996). Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–91.
  • Irwin JJ, Sterling T, Mysinger MM, et al. (2012). ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–68.
  • Kasa P, Rakonczay Z, Gulya K. (1997). The cholinergic system in Alzheimer’s disease. Prog Neurobiol 52:511–35.
  • Lane RM, Potkin SG, Enz E. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9:101–24.
  • Li B, Sedlacek M, Manoharan I, et al. (2005). Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol 70:1673–84.
  • Masson P, Xie W, Froment MT, Lockridge O. (2001). Effects of mutations of active site residues and amino acids interacting with the Omega loop on substrate activation of butyrylcholinesterase. Biochim. Biophys. Acta 1544:166–76.
  • Mesulam MM, Geula C. (1994). Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol 36:722–7.
  • Müller TC, Rocha JBT, Morsch VM, et al. (2002). Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. Biochem Biophys Acta 1587:92–8.
  • Myers RL. (2007). The 100 most important chemical compounds: a reference guide. Westport, CT, USA:Greenwood Press.
  • Nordberg A, Ballard C, Bullock C, et al. (2013). A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord 15:PCC.12r01412.
  • Op Den Velde W, Stam FC. (1976). Some cerebral proteins and enzyme systems in Alzheimer's presenile and senile dementia. J Am Geriatr Soc 24:12–6.
  • Pato MT, Murphy DL, DeVane LC. (1991). Sustained plasma concentrations of fluoxetine and/or norfluoxetine four and eight weeks after fluoxetine discontinuation. J Clin Psychopharmacol 11:224–5.
  • Perry EK, Perry RH, Blessed G, Tomlinson BE. (1978). Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 4:273–7.
  • Pettersen EF, Goddard TD, Huang CC, et al. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–12.
  • Prody CA, Zevin-Sonkin D, Gnatt A, et al. (1987). Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc Natl Acad Sci USA 84:3555–9.
  • Quinn DM. (1987). Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 87:955–79.
  • Radic Z, Pickering NA, Vellom DC, et al. (1993). Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 32:12074–84.
  • Reyes AE, Perez DR, Alvarez A, et al. (1997). A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem Biophys Res Commun 232:652–5.
  • Rosenberry TL, Brazzolotto X, Macdonald IR, et al. (2017). Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study. Molecules 22:2098.
  • Sager JE, Lutz JD, Foti RS, et al. (2014). Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther 95:653–62.
  • Salentin S, Schreiber S, Haupt VJ, et al. (2015). PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43:W443–7.
  • Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM. (2012). High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinformatics 13:S13.
  • Segel IR. (1975). Enzyme Kinetics. New York: John Wiley and Sons Ins.
  • Tavoulari S, Forrest LR, Rudnick G. (2009). Fluoxetine (Prozac) binding to serotonin transporter is modulated by chloride and conformational changes. J Neurosci 29:9635–43.
  • Tougu V. (2001). Acetylcholinesterase: Mechanism of catalysis and inhibition. Curr Med Chem 1:155–70.
  • Wang J, Zhang Y, Xu H, et al. (2014). Fluoxetine improves behavioral performance by suppressing the production of soluble Β-amyloid in APP/PS1 mice. Curr Alzheimer Res 11:672–80.
  • Wszelaki N, Kuciun A, Kiss AK. (2010). Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm 60:119–28.
  • Xie W, Stribley JA, Chatonnet A, et al. (2000). Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J Pharmacol Exp Ther 293:896–902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.