Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 49, 2019 - Issue 9
132
Views
5
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Biotransformation of anthocyanins from Vitis amurensis Rupr of “Beibinghong” extract by human intestinal microbiota

, , , , , & ORCID Icon show all
Pages 1025-1032 | Received 30 Sep 2018, Accepted 02 Oct 2018, Published online: 04 Jan 2019

References

  • Appelhagen I, Wulff-Vester AK, Wendell M, et al. (2018). Colour bio-factories: towards scale-up production of anthocyanins in plant cell cultures. Metab Eng 48:218–32.
  • Aura AM, Martin-Lopez P, O'Leary KA, et al. (2005). In vitro metabolism of anthocyanins by human gut microflora. Eur J Nutr 44:133–42.
  • Aura AM, Mattila I, Hyötyläinen T, et al. (2013). Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches. Eur J Nutr 52:833–46.
  • Aura AM, O'Leary KA, Williamson G, et al. (2002). Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem 50:1725–30.
  • Berman J, Sheng Y, Gomez Gomez L, et al. (2016). Red anthocyanins and yellow carotenoids form the color of orange-flower Gentian (Gentiana lutea L. var. aurantiaca). PloS One 11:e0162410.
  • Bitzer Z, Glisan S, Dorenkott M, et al. (2015). Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. J Nutr Biochem 26:827–31.
  • Chen L, Jiang B, Zhong C, et al. (2018). Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 39:471–81.
  • Chen Y, Li Q, Zhao T, et al. (2017). Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora. Food Chem 237:887–94.
  • Cheng JR, Liu XM, Chen ZY, et al. (2016). Mulberry anthocyanin biotransformation by intestinal probiotics. Food Chem 213:721–7.
  • Engemann A, Hübner F, Rzeppa S, Humpf HU. (2012). Intestinal metabolism of two a-type procyanidins using the pig cecum model: detailed structure elucidation of unknown catabolites with Fourier transform mass spectrometry (FTMS). J Agric Food Chem 60:749–57.
  • Fairlie-Jones L, Davison K, Fromentin E, Hill AM. (2017). The effect of anthocyanin-rich foods or extracts on vascular function in adults: a systematic review and meta-analysis of randomised controlled trials. Nutrients 9:908.
  • Faria A, Fernandes I, Norberto S, et al. (2014). Interplay between anthocyanins and gut microbiota. J Agric Food Chem 62:6898.
  • Fleschhut J, Kratzer F, Rechkemmer G, Kulling SE. (2006). Stability and biotransformation of various dietary anthocyanins in vitro. Eur J Nutr 45:7–18.
  • Forester SC, Waterhouse AL. (2008). Identification of Cabernet Sauvignon anthocyanin gut microflora metabolites. J Agric Food Chem 56:9299–304.
  • Gaiz AA, Mosawy S, Colson N, Singh I. (2018). Potential of anthocyanin to prevent cardiovascular disease in diabetes. Altern Ther Health Med 24:40–7.
  • Goodrich KM, Neilson AP. (2014). Simultaneous UPLC–MS/MS analysis of native catechins and procyanidins and their microbial metabolites in intestinal contents and tissues of male Wistar Furth inbred rats. J Chromatogr B Analyt Technol Biomed Life Sci 958:63–74.
  • He Y, Wen L, Liu J, et al. (2018a). Optimisation of pulsed electric fields extraction of anthocyanin from Beibinghong Vitis amurensis Rupr. Nat prod Res 32:23–9.
  • He Y, Wen L, Yu H, et al. (2018b). Isolation and structural identification of the main anthocyanin monomer in Vitis amurensis Rupr. Nat prod Res 32:867–70.
  • Hribar U, Ulrih NP. (2014). The metabolism of anthocyanins. Curr drug Metabol 15:3–13.
  • Kay CD. (2006). Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev 19:137–46.
  • Kubow S, Iskandar MM, Sabally K, et al. (2016). Biotransformation of anthocyanins from two purple-fleshed sweet potato accessions in a dynamic gastrointestinal system. Food Chem 192:171–7.
  • Kylli P, Nohynek L, Puupponen-Pimiä R, et al. (2010). Rowanberry phenolics: compositional analysis and bioactivities. J Agric Food Chem 58:11985–92.
  • Lee HC, Jenner AM, Low CS, Lee YK. (2006). Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876–84.
  • Lee YM, Yoon Y, Yoon H, et al. (2017). Dietary anthocyanins against obesity and inflammation. Nutrients 9:1089.
  • Li S, Sui Y, Xiao J, et al. (2013). Absorption and urinary excretion of A-type procyanidin oligomers from Litchi chinensis pericarp in rats by selected ion monitoring liquid chromatography-mass spectrometry. Food Chem 138:1536–42.
  • Liang L, Wu X, Zhu M, et al. (2012). Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacogn Mag 8:215.
  • Mazza G, Kay CD. (2008). Bioactivity, absorption, and metabolism of anthocyanins. Recent Adv Polyphenol Res 1:228–62.
  • Ogura K, Ogura M, Shoji T, et al. (2016). Oral administration of apple procyanidins ameliorates insulin resistance via suppression of pro-inflammatory cytokine expression in liver of diabetic ob/ob mice. J Agric Food Chem 64:8857–65.
  • Pérez-Jiménez J, Fezeu L, Touvier M, et al. (2011). Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93:1220.
  • Putta S, Yarla NS, Kumar EK, et al. (2017). Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications. Curr Med Chem 25.
  • Różańska D, Regulska-Ilow B. (2018). The significance of anthocyanins in the prevention and treatment of type 2 diabetes. Adv Clin Exp Med 27:135–42.
  • Scazzocchio B, Vari R, Filesi C, D'Archivio M, et al. (2011). Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating pparγ activity in human omental adipocytes. Diabetes 60:2234–44.
  • Serra A, Macià A, Romero MP, et al. (2011). Distribution of procyanidins and their metabolites in rat plasma and tissues after an acute intake of hazelnut extract. Food Funct 2:562–8.
  • Sulc M, Kotikova Z, Paznocht L, et al. (2017). Changes in anthocyanidin levels during the maturation of color-fleshed potato (Solanum tuberosum L.) tubers. Food Chem 237:981–8.
  • Wang H, Hua H, Liu X, et al. (2014). In vitro biotransformation of red ginseng extract by human intestinal microflora: metabolites identification and metabolic profile elucidation using LC-Q-TOF/MS. J Pharm Biomed Anal 98:296–306.
  • Wu T, Qi X, Liu Y, et al. (2013). Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem 141:482–7.
  • Yang HJ, Kim MJ, Kang ES, et al. (2018). Red mulberry fruit aqueous extract and silk proteins accelerate acute ethanol metabolism and promote the antioxidant enzyme systems in rats. Mol Med Rep 18:1197–205.
  • Zhang X, Yang Y, Wu Z, Weng P. (2016). The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J Agric Food Chem 64:2582–90.
  • Zhu Y, Sun H, He S, et al. (2018). Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro. PloS One 13:e0195754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.