Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 1
927
Views
44
CrossRef citations to date
0
Altmetric
Review Articles

Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease

ORCID Icon & ORCID Icon
Pages 19-33 | Received 24 Jun 2019, Accepted 10 Jul 2019, Published online: 01 Aug 2019

References

  • Allerston CK, Shimizu M, Fujieda M, et al. (2007). Molecular evolution and balancing selection in the flavin-containing monooxygenase 3 gene (FMO3). Pharmacogenet Genomics 17:827–39.
  • Al-Waiz M, Ayesh R, Mitchell SC, et al. (1987). A genetic polymorphism of the N-oxidation of trimethylamine in humans. Clin Pharmacol Ther 42:588–94.
  • Attar M, Dong D, John LK-H, Tang-Liu DD-S. (2003). Cytochrome P450 2C8 and flavin-containing monooxygenases are involved in the metabolism of tazarotenic acid in humans. Drug Metab Dispos 31:476–81.
  • Ballard JE, Prueksaritanont T, Tang C. (2007). Hepatic metabolism of MK-0457, a potent aurora kinase inhibitor: interspecies comparison and role of human cytochrome P450 and flavin-containing monooxygenase. Drug Metab Dispos 35:1447–51.
  • Barter PJ, Brewer HB, Chapman MJ, et al. (2003). Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 23:160–7.
  • Bennett BJ, Vallim TQ, de A, Wang Z, et al. (2013). Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 17:49–60.
  • Benowitz NL, Jacob P, Fong I, Gupta S. (1994). Nicotine metabolic profile in man: comparison of cigarette smoking and transdermal nicotine. J Pharmacol Exp Ther 268:296–303.
  • Bloom AJ, Murphy SE, Martinez M, et al. (2013). Effects upon in-vivo nicotine metabolism reveal functional variation in FMO3 associated with cigarette consumption. Pharmacogenet Genomics 23:62–8.
  • Brunelle A, Bi YA, Lin J, et al. (1997). Characterization of two human flavin-containing monooxygenase (form 3) enzymes expressed in Escherichia coli as maltose binding protein fusions. Drug Metab Dispos 25:1001–7.
  • Bryant TS, Duggal P, Yu B, et al. (2019). Association of FMO3 variants with blood pressure in the atherosclerosis risk in communities study. Int J Hypertens 2019:1–8.
  • Bushueva O, Solodilova M, Churnosov M, et al. (2014). The flavin-containing monooxygenase 3 gene and essential hypertension: the joint effect of polymorphism E158K and cigarette smoking on disease susceptibility. Int J Hypertens 2014:1–5.
  • Cashman J, Zhang J, Nelson M, Braun A. (2008). Analysis of flavin-containing monooxygenase 3 genotype data in populations administered the anti-schizophrenia agent olanzapine. Drug Metab Lett 2:100–14.
  • Cashman JR, Park SB, Yang ZC, et al. (1992). Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N′-oxide. Chem Res Toxicol 5:639–46.
  • Cashman JR, Park SB, Yang ZC, et al. (1993). Chemical, enzymatic, and human enantioselective S-oxygenation of cimetidine. Drug Metab Dispos 21:587–97.
  • Cashman JR, Xiong Y, Lin J, et al. (1999a). In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochem Pharmacol 58:1047–55.
  • Cashman JR, Xiong YN, Xu L, Janowsky A. (1999b). N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): role in bioactivation and detoxication. J Pharmacol Exp Ther 288:1251–60.
  • Cashman JR, Zhang J, Leushner J, Braun A. (2001). Population distribution of human flavin-containing monooxygenase form 3: gene polymorphisms. Drug Metab Dispos 29:1629–37.
  • Cashman JR, Zhang J. (2002). Interindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation. Drug Metab Dispos 30:1043–52.
  • Cashman JR, Zhang J. (2006). Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46:65–100.
  • Cashman JR. (2002). Human flavin-containing monooxygenase (form 3): polymorphisms and variations in chemical metabolism. Pharmacogenomics 3:325–39.
  • Cashman JR. (2004). The implications of polymorphisms in mammalian flavin-containing monooxygenases in drug discovery and development. Drug Discov Today 9:574–81.
  • Cashman JR. (2008). Role of flavin-containing monooxgenase in drug development. Expert Opin Drug Metab Toxicol 4:1507–21.
  • Catucci G, Occhipinti A, Maffei M, et al. (2013). Effect of human flavin-containing monooxygenase 3 polymorphism on the metabolism of aurora kinase inhibitors. Int J Mol Sci 14:2707–16.
  • Cho CE, Caudill MA. (2017). Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends Endocrinol Metab 28:121–30.
  • Chung W-G, Park C-S, Roh H-K, et al. (2000). Oxidation of ranitidine by isozymes of flavin-containing monooxygenase and cytochrome P450. Jpn J Pharmacol 84:213–20.
  • Coecke S, Debast G, Phillips IR, et al. (1998). Hormonal regulation of microsomal flavin-containing monooxygenase activity by sex steroids and growth hormone in co-cultured adult male rat hepatocytes. Biochem Pharmacol 56:1047–51.
  • Collins HL, Drazul-Schrader D, Sulpizio AC, et al. (2016). l-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis 244:29–37.
  • Dambrova M, Latkovskis G, Kuka J, et al. (2016). Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp Clin Endocrinol Diabetes 124:251–6.
  • DiNicolantonio JJ, Lavie CJ, Fares H, et al. (2013). l-Carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin Proc 88:544–51.
  • Dolan C, Shields DC, Stanton A, et al. (2005). Polymorphisms of the flavin containing monooxygenase 3 (FMO3) gene do not predispose to essential hypertension in Caucasians. BMC Med Genet 6:41.
  • Dolphin C, Shephard EA, Povey S, et al. (1991). Cloning, primary sequence, and chromosomal mapping of a human flavin-containing monooxygenase (FMO1). J Biol Chem 266:12379–85.
  • Dolphin CT, Beckett DJ, Janmohamed A, et al. (1998). The flavin-containing monooxygenase 2 gene (FMO2) of humans, but not of other primates, encodes a truncated, nonfunctional protein. J Biol Chem 273:30599–607.
  • Dolphin CT, Cullingford TE, Shcphard EA, et al. (1996). Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FM04. Eur J Biochem 235:683–9.
  • Dolphin CT, Janmohamed A, Smith RL, et al. (1997b). Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 17:491–4.
  • Dolphin CT, Janmohamed A, Smith RL, et al. (2000). Compound heterozygosity for missense mutations in the flavin-containing monooxygenase 3 (FM03) gene in patients with fish-odour syndrome. Pharmacogenetics 10:799–807.
  • Dolphin CT, Riley JH, Smith RL, et al. (1997a). Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA. Genomics 46:260–7.
  • Duggan DE, Hooke KF, Risley EA, et al. (1977). Identification of the biologically active form of sulindac. J Pharmacol Exp Ther 201:8–13.
  • Etienne F, Resnick L, Sagher D, et al. (2003). Reduction of sulindac to its active metabolite, sulindac sulfide: assay and role of the methionine sulfoxide reductase system. Biochem Biophys Res Commun 312:1005–10.
  • Falls JG, Blake BL, Cao Y, et al. (1995). Gender differences in hepatic expression of flavin-containing monooxygenase isoforms (FMO1, FMO3, and FMO5) in mice. J Biochem Toxicol 10:171–7.
  • Fennema D, Phillips IR, Shephard EA. (2016). Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 44:1839–50.
  • Flanagan JL, Simmons PA, Vehige J, et al. (2010). Role of carnitine in disease. Nutr Metab 7:30.
  • Francois AA, Nishida CR, Ortiz de Montellano PR, et al. (2009). Human flavin-containing monooxygenase 2.1 catalyzes oxygenation of the antitubercular drugs thiacetazone and ethionamide. Drug Metab Dispos 37:178–86.
  • Fujieda M, Yamazaki H, Togashi M, et al. (2003). Two novel single nucleotide polymorphisms (SNPs) of the FMO3 gene in Japanese. Drug Metab Pharmacokinet 18:333–5.
  • Fukami K, Yamagishi S, Sakai K, et al. (2015). Oral l-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J Cardiovasc Pharmacol 65:289–95.
  • Furnes B, Feng J, Sommer SS, Schlenk D. (2003). Identification of novel variants of the flavin-containing monooxygenase gene family in African Americans. Drug Metab Dispos 31:187–93.
  • Furnes B, Schlenk D. (2004). Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes. Toxicol Sci 78:196–203.
  • Gao C, Catucci G, Di Nardo G, et al. (2016). Human flavin-containing monooxygenase 3: structural mapping of gene polymorphisms and insights into molecular basis of drug binding. Gene 593:91–9.
  • Gao X, Liu X, Xu J, et al. (2014). Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng 118:476–81.
  • Gonzalez Malagon SG, Melidoni AN, Hernandez D, et al. (2015). The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. Biochem Pharmacol 96:267–77.
  • Guengerich FP. (2007). Mechanisms of cytochrome P450 substrate oxidation: minireview. J Biochem Mol Toxicol 21:163–8.
  • Guertin KA, Li XS, Graubard BI, et al. (2017). Serum trimethylamine N-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study. Cancer Epidemiol Biomarkers Prev 26:945–52.
  • Hai X, Adams E, Hoogmartens J, Van Schepdael A. (2009). Enantioselective in-line and off-line CE methods for the kinetic study on cimetidine and its chiral metabolites with reference to flavin-containing monooxygenase genetic isoforms. Electrophoresis 30:1248–57.
  • Hai X, Nauwelaers T, Busson R, et al. (2010). A rapid and sensitive CE method with field-enhanced sample injection and in-capillary derivatization for selenomethionine metabolism catalyzed by flavin-containing monooxygenases. Electrophoresis 31:3352–61.
  • Hamman MA, Haehner-Daniels BD, Wrighton SA, et al. (2000). Stereoselective sulfoxidation of sulindac sulfide by flavin-containing monooxygenases. Biochem Pharmacol 60:7–17.
  • Hanlon SP, Camattari A, Abad S, et al. (2012). Expression of recombinant human flavin monooxygenase and moclobemide-N-oxide synthesis on multi-mg scale. Chem Commun 48:6001–3.
  • He Y-Y, Hasan AME, Zhang Q, et al. (2019). Novel association between flavin-containing monooxygenase 3 gene polymorphism and antithyroid drug-induced agranulocytosis in the Han population. Ann Nutr Metab 74:200–6.
  • Henderson MC, Krueger SK, Siddens LK, et al. (2004a). S-Oxygenation of the thioether organophosphate insecticides phorate and disulfoton by human lung flavin-containing monooxygenase 2. Biochem Pharmacol 68:959–67.
  • Henderson MC, Krueger SK, Stevens JF, Williams DE. (2004b). Human flavin-containing monooxygenase form 2 S-oxygenation: sulfenic acid formation from thioureas and oxidation of glutathione. Chem Res Toxicol 17:633–40.
  • Henderson MC, Siddens LK, Morré JT, et al. (2008). Metabolism of the anti-tuberculosis drug ethionamide by mouse and human FMO1, FMO2 and FMO3 and mouse and human lung microsomes. Toxicol Appl Pharmacol 233:420–7.
  • Hernandez D, Addou S, Lee D, et al. (2003). Trimethylaminuria and a human FMO3 mutation database. Hum Mutat 22:209–13.
  • Hernandez D, Janmohamed A, Chandan P, et al. (2004). Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters. Pharmacogenetics 14:117–30.
  • Hibar DP, Stein JL, Ryles AB, et al. (2013). Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects. Brain Imaging Behav 7:102–15.
  • Hines RN, Hopp KA, Franco J, et al. (2002). Alternative processing of the human FMO6 gene renders transcripts incapable of encoding a functional flavin-containing monooxygenase. Mol Pharmacol 62:320–5.
  • Hines RN, Luo Z, Hopp KA, et al. (2003). Genetic variability at the human FMO1 locus: significance of a basal promoter Yin Yang 1 element polymorphism (FMO1*6). J Pharmacol Exp Ther 306:1210–8.
  • Hisamuddin IM, Wehbi MA, Chao A, et al. (2004). Genetic polymorphisms of human flavin monooxygenase 3 in sulindac-mediated primary chemoprevention of familial adenomatous polyposis. Clin Cancer Res 10:8357–62.
  • Hisamuddin IM, Wehbi MA, Schmotzer B, et al. (2005). Genetic polymorphisms of flavin monooxygenase 3 in sulindac-induced regression of colorectal adenomas in familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 14:2366–9.
  • Jacobsen W, Christians U, Benet LZ. (2000). In vitro evaluation of the disposition of a novel cysteine protease inhibitor. Drug Metab Dispos 28:1343–51.
  • Janmohamed A, Dolphin CT, Phillips IR, Shephard EA. (2001). Quantification and cellular localization of expression in human skin of genes encoding flavin-containing monooxygenases and cytochromes P450. Biochem Pharmacol 62:777–86.
  • Janmohamed A, Hernandez D, Phillips IR, Shephard EA. (2004). Cell-, tissue-, sex- and developmental stage-specific expression of mouse flavin-containing monooxygenases (Fmos). Biochem Pharmacol 68:73–83.
  • Jin X, Pybus BS, Marcsisin SR, et al. (2014). An LC–MS based study of the metabolic profile of primaquine, an 8-aminoquinoline antiparasitic drug, with an in vitro primary human hepatocyte culture model. Eur J Drug Metab Pharmacokinet 39:139–46.
  • Joo J, Wu Z, Lee B, et al. (2015). In vitro metabolism of an estrogen-related receptor γ modulator, GSK5182, by human liver microsomes and recombinant cytochrome P450s. Biopharm Drug Dispos 36:163–73.
  • Kajita J, Inano K, Fuse E, et al. (2002). Effects of olopatadine, a new antiallergic agent, on human liver microsomal cytochrome P450 activities. Drug Metab Dispos 30:1504–11.
  • Kang J-H, Chung W-G, Lee K-H, et al. (2000). Phenotypes of flavin-containing monooxygenase activity determined by ranitidine N-oxidation are positively correlated with genotypes of linked FMO3 gene mutations in a Korean population. Pharmacogenetics 10:67–78.
  • Karanam BV, Hop CECA, Liu DQ, et al. (2004). In vitro metabolism of mk-0767 [(±)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-n-[[(4-trifluoromethyl) phenyl]methyl]benzamide], a peroxisome proliferator-activated receptor α/γ agonist. I. Role of cytochrome P450, methyltransferases, flavin monooxygenases, and esterases. Drug Metab Dispos 32:1015–22.
  • Koeth RA, Wang Z, Levison BS, et al. (2013). Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–85.
  • Korprasertthaworn P, Polasek TM, Sorich MJ, et al. (2015). In vitro characterization of the human liver microsomal kinetics and reaction phenotyping of olanzapine metabolism. Drug Metab Dispos 43:1806–14.
  • Koukouritaki SB, Hines RN. (2005). Flavin-containing monooxygenase genetic polymorphism: impact on chemical metabolism and drug development. Pharmacogenomics 6:807–22.
  • Koukouritaki SB, Poch MT, Cabacungan ET, et al. (2005). Discovery of novel flavin-containing monooxygenase 3 (FMO3) single nucleotide polymorphisms and functional analysis of upstream haplotype variants. Mol Pharmacol 68:383–92.
  • Koukouritaki SB, Poch MT, Henderson MC, et al. (2007). Identification and functional analysis of common human flavin-containing monooxygenase 3 genetic variants. J Pharmacol Exp Ther 320:266–73.
  • Koukouritaki SB, Simpson P, Yeung CK, et al. (2002). Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res 51:236–43.
  • Kousba A, Soll R, Yee S, Martin M. (2007). Cyclic conversion of the novel Src kinase inhibitor [7-(2,6-Dichloro-phenyl)-5-methyl-benzo[1,2,4]triazin-3-yl]-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-amine (TG100435) and its N-oxide metabolite by flavin-containing monooxygenases and cytochrome P450 reductase. Drug Metab Dispos 35:2242–51.
  • Krueger, SK, Williams, DE, Yueh, M-F, et al. (2002a). Genetic polymorphisms of flavin-containing monooxygenase (FMO). Drug Metab Rev 34:523–32.
  • Krueger SK, Martin SA, Yueh M-F, et al. (2002b). Identification of active flavin-containing monooxygenase isoform 2 in human lung and characterization of expressed protein. Drug Metab Dispos 30:34–41.
  • Krueger SK, Siddens LK, Henderson MC, et al. (2005). Haplotype and functional analysis of four flavin-containing monooxygenase isoform 2 (FMO2) polymorphisms in Hispanics. Pharmacogenet Genomics 15:245–56.
  • Krueger SK, Williams DE. (2005). Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–87.
  • Lang DH, Rettie AE. (2001). In vitro evaluation of potential in vivo probes for human flavin-containing monooxygenase (FMO): metabolism of benzydamine and caffeine by FMO and P450 isoforms. Br J Clin Pharmacol 50:311–4.
  • Lang DH, Yeung CK, Peter RM, et al. (1998). Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes. Biochem Pharmacol 56:1005–12.
  • Lattard V, Zhang J, Tran Q, et al. (2003). Two new polymorphisms of the FMO3 gene in Caucasian and African-American populations: comparative genetic and functional studies. Drug Metab Dispos 31:854–60.
  • Lawton MP, Cashman JR, Cresteil T, et al. (1994). A nomenclature for the mammalian flavin-containing monooxygenase gene family based on amino acid sequence identities. Arch Biochem Biophys 308:254–7.
  • Li F, Patterson AD, Krausz KW, et al. (2012). Metabolomics reveals the metabolic map of procainamide in humans and mice. Biochem Pharmacol 83:1435–44.
  • Li XS, Obeid S, Klingenberg R, et al. (2017). Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38:814–24.
  • Linnet K. (2002). Glucuronidation of olanzapine by cDNA-expressed human UDP-glucuronosyltransferases and human liver microsomes. Hum Psychopharmacol 17:233–8.
  • Lomri N, Yang Z, Cashman JR. (1993). Expression in Escherichia coli of the flavin-containing monooxygenase D (form II) from adult human liver: determination of a distinct tertiary amine substrate specificity. Chem Res Toxicol 6:425–9.
  • Luo JP, Vashishtha SC, Hawes EM, et al. (2011). In vitro identification of the human cytochrome p450 enzymes involved in the oxidative metabolism of loxapine. Biopharm Drug Dispos 32:398–407.
  • Mao M, Matimba A, Scordo MG, et al. (2009). Flavin-containing monooxygenase 3 polymorphisms in 13 ethnic populations from Europe, East Asia and sub-Saharan Africa: frequency and linkage analysis. Pharmacogenomics 10:1447–55.
  • Mayatepek E, Flock B, Zschocke J. (2004). Benzydamine metabolism in vivo is impaired in patients with deficiency of flavin-containing monooxygenase 3. Pharmacogenetics 14:775–7.
  • Miao J, Ling AV, Manthena PV, et al. (2015). Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 6:6498.
  • Miller CA, Corbin KD, da Costa K-A, et al. (2014). Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr 100:778–86.
  • Mitchell SC, Smith RL. (2001). Trimethylaminuria: the fish malodor syndrome. Drug Metab Dispos 29:517–21.
  • Mitchell SC, Smith RL. (2003). Trimethylamine and odorous sweat. J Inherit Metab Dis 26:415–6.
  • Mitchell SC, Zhang AQ, Barrett T, et al. (1997). Studies on the discontinuous N-oxidation of trimethylamine among Jordanian, Ecuadorian and New Guinean populations. Pharmacogenetics 7:45–50.
  • Mondul AM, Moore SC, Weinstein SJ, et al. (2015). Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocopherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer 137:2124–32.
  • Morandi A, Zusi C, Corradi M, et al. (2018). Minor diplotypes of FMO3 might protect children and adolescents from obesity and insulin resistance. Int J Obes 42:1243–8.
  • Motika MS, Zhang J, Zheng X, et al. (2009). Novel variants of the human flavin-containing monooxygenase 3 (FMO3) gene associated with trimethylaminuria. Mol Genet Metab 97:128–35.
  • Mushiroda T, Douya R, Takahara E, Nagata O. (2000). The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate. Drug Metab Dispos 28:1231–7.
  • Nagashima S, Shimizu M, Yano H, et al. (2009). Inter-individual variation in flavin-containing monooxygenase 3 in livers from Japanese: correlation with hepatic transcription factors. Drug Metab Pharmacokinet 24:218–25.
  • Nakajima M, Yamamoto T, Nunoya KI, et al. (1996). Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab Dispos 24:1212–7.
  • Nowiński A, Ufnal M. (2018). Trimethylamine N-oxide: a harmful, protective or diagnostic marker in lifestyle diseases? Nutrition 46:7–12.
  • Obeid R, Awwad HM, Rabagny Y, et al. (2016). Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism. Am J Clin Nutr 103:703–11.
  • Ohmi N, Yoshida H, Endo H, et al. (2003). S-oxidation of S-methyl-esonarimod by flavin-containing monooxygenases in human liver microsomes. Xenobiotica 33:1221–31.
  • Okubo M, Narita M, Murayama N, et al. (2016). Individual differences in in vitro and in vivo metabolic clearances of the antipsychotic drug olanzapine from non-smoking and smoking Japanese subjects genotyped for cytochrome P4502D6 and flavincontaining monooxygenase 3. Hum Psychopharmacol 31:83–92.
  • Overby LH, Carver GC, Philpot RM. (1997). Quantitation and kinetic properties of hepatic microsomal and recombinant flavin-containing monooxygenases 3 and 5 from humans. Chem Biol Interact 106:29–45.
  • Palmer AL, Leykam VL, Larkin A, et al. (2012). Metabolism and pharmacokinetics of the anti-tuberculosis drug ethionamide in a flavin-containing monooxygenase null mouse. Pharmaceuticals 5:1147–59.
  • Park C-S, Kang J-H, Chung W-G, et al. (2002). Ethnic differences in allelic frequency of two flavin-containing monooxygenase 3 (FMO3) polymorphisms: linkage and effects on in vivo and in vitro FMO activities. Pharmacogenetics 12:77–80.
  • Park SB, Jacob P, Benowitz NL, Cashman JR. (1993). Stereoselective metabolism of (S)-(–)-nicotine in humans: formation of trans-(S)-(–)-nicotine N-1′-oxide. Chem Res Toxicol 6:880–8.
  • Parte P, Kupfer D. (2005). Oxidation of tamoxifen by human flavin-containing monooxygenase (FMO) 1 and FMO3 to tamoxifen-N-oxide and its novel reduction back to tamoxifen by human cytochromes P450 and hemoglobin. Drug Metab Dispos 33:1446–52.
  • Perez-Paramo YX, Chen G, Ashmore JH, et al. (2019). Nicotine-N′-oxidation by flavin monooxygenase enzymes. Cancer Epidemiol Biomarkers Prev 28:311–20.
  • Phillips IR, Dolphin CT, Clair P, et al. (1995). The molecular biology of the flavin-containing monooxygenases of man. Chem Biol Interact 96:17–32.
  • Phillips IR, Francois AA, Shephard EA. (2007). The flavin-containing monooxygenases (FMOs): genetic variation and its consequences for the metabolism of therapeutic drugs. Curr Pharmacogenomics 5:292–313.
  • Phillips IR, Shephard EA. (2008). Flavin-containing monooxygenases: mutations, disease and drug response. Trends Pharmacol Sci 29:294–301.
  • Phillips IR, Shephard EA. (2017). Drug metabolism by flavin-containing monooxygenases of human and mouse. Expert Opin Drug Metab Toxicol 13:167–81.
  • Phillips IR, Shephard EA. (2015). Primary trimethylaminuria. In: Pagen RA, Adams MP, Arlinger HH, et al., eds. Primary trimethylaminuria. Seattle (WA): University of Washington.
  • Pichard-Garcia L, Weaver RJ, Eckett N, et al. (2004). The olivacine derivative S16020 (9-hydroxy-5,6-dimethyl-n-[2-(dimethylamino)ethyl)-6h-pyrido(4,3-b)-carbazole-1-carboxamide) induces CYP1A and its own metabolism in human hepatocytes in primary culture. Drug Metab Dispos 32:80–8.
  • Pike MG, Martin YN, Mays DC, et al. (1999). Roles of FMO and CYP450 in the metabolism in human liver microsomes of S-methyl-N, N-diethyldithiocarbamate, a disulfiram metabolite. Alcohol Clin Exp Res 23:1173–9.
  • Poetsch M, Czerwinski M, Wingenfeld L, et al. (2010). A common FMO3 polymorphism may amplify the effect of nicotine exposure in sudden infant death syndrome (SIDS). Int J Legal Med 124:301–6.
  • Potega A, Dabrowska E, Niemira M, et al. (2011). The imidazoacridinone antitumor drug, C-1311, is metabolized by flavin monooxygenases but not by cytochrome P450s. Drug Metab Dispos 39:1423–32.
  • Poulsen LL, Ziegler DM. (1995). Multisubstrate flavin-containing monooxygenases: applications of mechanism to specificity. Chem Biol Interact 96:57–73.
  • Prueksaritanont T, Lu P, Gorham L, et al. (2000). Interspecies comparison and role of human cytochrome P450 and flavin-containing monooxygenase in hepatic metabolism of l-775,606, a potent 5-HT 1D receptor agonist. Xenobiotica 30:47–59.
  • Qian L, Ortiz de Montellano PR. (2006). Oxidative activation of thiacetazone by the Mycobacterium tuberculosis flavin monooxygenase EtaA and human FMO1 and FMO3. Chem Res Toxicol 19:443–9.
  • Rawden HC, Kokwaro GO, Ward SA, Edwards G. (2001). Relative contribution of cytochromes P-450 and flavin-containing monooxygenases to the metabolism of albendazole by human liver microsomes. Br J Clin Pharmacol 49:313–22.
  • Reid JM, Walker DL, Miller JK, et al. (2004). The metabolism of pyrazoloacridine (NSC 366140) by cytochromes P450 and flavin monooxygenase in human liver microsomes. Clin Cancer Res 10:1471–80.
  • Ring BJ, Catlow J, Lindsay TJ, et al. (1996). Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 276:658–66.
  • Ring BJ, Wrighton SA, Aldridge SLK, et al. (1999). Flavin-containing monooxygenase-mediated N-oxidation of the M1-muscarinic agonist xanomeline. Drug Metab Dispos 27:1099–103.
  • Robinson-Cohen C, Newitt R, Shen DD, et al. (2016). Association of FMO3 variants and trimethylamine N-oxide concentration, disease progression, and mortality in CKD patients. PLoS One 11: e0161074.
  • Rodriguez RJ, Miranda CL. (2000). Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases. Drug Metab Dispos 28:1083–6.
  • Ryu S-D, Yi H-G, Cha Y-N, et al. (2004). Flavin-containing monooxygenase activity can be inhibited by nitric oxide-mediated S-nitrosylation. Life Sci 75:2559–72.
  • Sachse C, Ruschen S, Dettling M, et al. (1999). Flavin monooxygenase 3 (FMO3) polymorphism in a white population: allele frequencies, mutation linkage, and functional effects on clozapine and caffeine metabolism. Clin Pharmacol Ther 66:431–8.
  • Salva M, Jansat JM, Martinez-Todd A, Palacios JM. (2003). Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos 31:404–11.
  • Sauna ZE, Kimchi-Sarfaty C. (2011). Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–91.
  • Schugar RC, Shih DM, Warrier M, et al. (2017). The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep 19:2451–61.
  • Scott F, Gonzalez Malagon SG, O’Brien BA, et al. (2017). Identification of flavin-containing monooxygenase 5 (FMO5) as a regulator of glucose homeostasis and a potential sensor of gut bacteria. Drug Metab Dispos 45:982–9.
  • Serkova N, Florian Fuller T, Klawitter J, et al. (2005). 1H-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney Int 67:1142–51.
  • Shaffer CL, Gunduz M, Scialis RJ, Fang AF. (2007). Metabolism and disposition of a selective α7 nicotinic acetylcholine receptor agonist in humans. Drug Metab Dispos 35:1188–95.
  • Shephard EA, Chandan P, Stevanovic-Walker M, et al. (2007). Alternative promoters and repetitive DNA elements define the species-dependent tissue-specific expression of the FMO1 genes of human and mouse. Biochem J 406:491–9.
  • Shephard EA, Treacy EP, Phillips IR. (2015). Clinical utility gene card for: trimethylaminuria – update 2014. Eur J Hum Genet 23:1269.
  • Shih DM, Wang Z, Lee R, et al. (2015). Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 56:22–37.
  • Shimada T, Yamazaki H, Mimura M, et al. (1994). Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–23.
  • Shimizu M, Cashman JR, Yamazaki H. (2007a). Transient trimethylaminuria related to menstruation. BMC Med Genet 8:2.
  • Shimizu M, Shiraishi A, Sato A, et al. (2015). Potential for drug interactions mediated by polymorphic flavin-containing monooxygenase 3 in human livers. Drug Metab Pharmacokinet 30:70–4.
  • Shimizu M, Yano H, Nagashima S, et al. (2007b). Effect of genetic variants of the human flavin-containing monooxygenase 3 on N- and S-oxygenation activities. Drug Metab Dispos 35:328–30.
  • Siddens LK, Krueger SK, Henderson MC, Williams DE. (2014). Mammalian flavin-containing monooxygenase (FMO) as a source of hydrogen peroxide. Biochem Pharmacol 89:141–7.
  • Söderberg MM, Haslemo T, Molden E, Dahl M-L. (2013). Influence of FMO1 and 3 polymorphisms on serum olanzapine and its N-oxide metabolite in psychiatric patients. Pharmacogenomics J 13:544–50.
  • Störmer E, Brockmöller J, Roots I, Schmider J. (2000). Cytochrome P-450 enzymes and FMO3 contribute to the disposition of the antipsychotic drug perazine in vitro. Psychopharmacology (Berl) 151:312–20.
  • Störmer E, Roots I, Brockmöller J. (2001). Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity. Br J Clin Pharmacol 50:553–61.
  • Szökő É, Tábi T, Borbás T, et al. (2004). Assessment of the N-oxidation of deprenyl, methamphetamine, and amphetamine enantiomers by chiral capillary electrophoresis: an in vitro metabolism study. Electrophoresis 25:2866–75.
  • Takata Y, Zhang X, Li H, et al. (2013). Fish Intake and risks of total and cause-specific mortality in 2 population-based cohort studies of 134,296 men and women. Am J Epidemiol 178:46–57.
  • Tang WHW, Wang Z, Kennedy DJ, et al. (2015). Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116:448–55.
  • Tang WHW, Wang Z, Levison BS, et al. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–84.
  • Tang Y-J, Hu K, Huang W-H, et al. (2017). Effects of FMO3 polymorphisms on pharmacokinetics of sulindac in Chinese healthy male volunteers. BioMed Res Int 2017:1–7.
  • Teitelbaum AM, Murphy SE, Akk G, et al. (2018). Nicotine dependence is associated with functional variation in FMO3, an enzyme that metabolizes nicotine in the brain. Pharmacogenomics J 18:136–43.
  • Treacy EP, Akerman BR, Chow LML, et al. (1998). Mutations of the flavin-containing monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxication. Hum Mol Genet 7:839–45.
  • Tugnait M, Hawes EM, McKay G, et al. (1997). N-oxygenation of clozapine by flavin-containing monooxygenase. Drug Metab Dispos 25:524–7.
  • Türkanoğlu Özçelik A, Can Demirdöğen B, Demirkaya Ş, Adalı O. (2013). Flavin containing monooxygenase 3 genetic polymorphisms Glu158Lys and Glu308Gly and their relation to ischemic stroke. Gene 521:116–21.
  • Uehara S, Shimizu M, Uno Y, et al. (2017). Marmoset flavin-containing monooxygenase 3 in the liver is a major benzydamine and sulindac sulfide oxygenase. Drug Metab Dispos 45:497–500.
  • Ufnal M, Zadlo A, Ostaszewski R. (2015). TMAO: a small molecule of great expectations. Nutrition 31:1317–23.
  • Uno Y, Shimizu M, Yamazaki H. (2013). Molecular and functional characterization of flavin-containing monooxygenases in Cynomolgus macaque. Biochem Pharmacol 85:1837–47.
  • Ussher JR, Lopaschuk GD, Arduini A. (2013). Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis 231:456–61.
  • Vannelli TA, Dykman A, Ortiz de Montellano PR. (2002). The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem 277:12824–9.
  • Veeramah KR, Thomas MG, Weale ME, et al. (2008). The potentially deleterious functional variant flavin-containing monooxygenase 2*1 is at high frequency throughout sub-Saharan Africa. Pharmacogenet Genomics 18:877–86.
  • Veeravalli S, Karu K, Scott F, et al. (2018). Effect of flavin-containing monooxygenase genotype, mouse strain, and gender on trimethylamine N-oxide production, plasma cholesterol concentration, and an index of atherosclerosis. Drug Metab Dispos 46:20–5.
  • Veeravalli S, Omar BA, Houseman L, et al. (2014). The phenotype of a flavin-containing monooyxgenase knockout mouse implicates the drug-metabolizing enzyme FMO1 as a novel regulator of energy balance. Biochem Pharmacol 90:88–95.
  • Vyas PM, Roychowdhury S, Koukouritaki SB, et al. (2006). Enzyme-mediated protein haptenation of dapsone and sulfamethoxazole in human keratinocytes: II. Expression and role of flavin-containing monooxygenases and peroxidases. J Pharmacol Exp Ther 319:497–505.
  • Wagmann L, Meyer MR, Maurer HH. (2016). What is the contribution of human FMO3 in the N-oxygenation of selected therapeutic drugs and drugs of abuse? Toxicol Lett 258:55–70.
  • Wang L, Christopher LJ, Cui D, et al. (2008). Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos 36:1828–39.
  • Wang Z, Klipfell E, Bennett BJ, et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63.
  • Warrier M, Shih DM, Burrows AC, et al. (2015). The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 10:326–38.
  • Whetstine JR, Yueh M-F, Hopp KA, et al. (2000). Ethnic differences in human flavin-containing monooxygenase 2 (FMO2) polymorphisms: detection of expressed protein in African-Americans. Toxicol Appl Pharmacol 168:216–24.
  • Wilson A, Teft WA, Morse BL, et al. (2015). Trimethylamine-N-oxide: a novel biomarker for the identification of inflammatory bowel disease. Dig Dis Sci 60:3620–30.
  • Xie G, Wong CC, Cheng K-W, et al. (2012). Regioselective oxidation of phospho-NSAIDs by human cytochrome P450 and flavin monooxygenase isoforms: implications for their pharmacokinetic properties and safety. Br J Pharmacol 167:222–32.
  • Xu R, Wang Q, Li L. (2015). A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genomics 16:S4.
  • Yamanaka H, Nakajima M, Nishimura K, et al. (2004). Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted. Eur J Pharm Sci 22:419–25.
  • Yamazaki H, Shimizu M. (2007). Genetic polymorphism of the flavin-containing monooxygenase 3 (FMO3) associated with trimethylaminuria (Fish Odor Syndrome): observations from Japanese patients. Curr Drug Metab 8:487–91.
  • Yamazaki H, Shimizu M. (2013). Survey of variants of human flavin-containing monooxygenase 3 (FMO3) and their drug oxidation activities. Biochem Pharmacol 85:1588–93.
  • Yanni SB, Annaert PP, Augustijns P, et al. (2008). Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metab Dispos 36:1119–25.
  • Yeung CK, Lang DH, Thummel KE, Rettie AE. (2000). Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab Dispos 28:1107–11.
  • Yu J, Brown DG, Burdette D. (2010). In vitro metabolism studies of nomifensine monooxygenation pathways: metabolite identification, reaction phenotyping, and bioactivation mechanism. Drug Metab Dispos 38:1767–78.
  • Zhang AQ, Mitchell SC, Smith RL. (1996). Exacerbation of symptoms of fish-odour syndrome during menstruation. Lancet 348:1740–1.
  • Zhang AQ, Mitchell SC, Smith RL. (1999). Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol 37:515–20.
  • Zhou L-P, Tan Z-R, Chen H, et al. (2014). Effect of two-linked mutations of the FMO3 gene on itopride metabolism in Chinese healthy volunteers. Eur J Clin Pharmacol 70:1333–8.
  • Zhou S, Kestell P, Paxton JW. (2002). 6-Methylhydroxylation of the anti-cancer agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by flavin-containing monooxygenase 3. Eur J Drug Metab Pharmacokinet 27:179–83.
  • Ziegler D. (1993). Recent studies on the structure and function of multisubstrate flavin-containing monooxygenases. Ann Rev Pharmacol Toxicol 33:179–99.
  • Ziegler DM. (2002). An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab Rev 34:503–11.
  • Zschocke J, Kohlmueller D, Quak E, et al. (1999). Mild trimethylaminuria caused by common variants in FMO3 gene. Lancet 354:834–5.
  • Zschocke J, Mayatepek E. (2000). Biochemical and molecular studies in mild flavin monooxygenase 3 deficiency. J Inherit Metab Dis 23:378–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.