Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 8
233
Views
12
CrossRef citations to date
0
Altmetric
Animal Pharmacokinetics and Metabolism

Withanolide a penetrates brain via intra-nasal administration and exerts neuroprotection in cerebral ischemia reperfusion injury in mice

ORCID Icon, ORCID Icon & ORCID Icon
Pages 957-966 | Received 03 Nov 2019, Accepted 22 Dec 2019, Published online: 13 Jan 2020

References

  • Akhoon BA, Pandey S, Tiwari S, Pandey R. (2016). Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp Gerontol 78:47–56.
  • Andrabi SA, Kim NS, Yu SW, et al. (2006). Poly (ADP-ribose)(PAR) polymer is a death signal. PNAS 103:18308–13.
  • Baitharu I, Jain V, Deep SN, et al. (2014). Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9:e105311.
  • Bors LA, Erdő F. (2019). Overcoming the blood-brain barrier challenges and tricks for CNS drug delivery. Sci Pharm 87:6.
  • Brouns R, De Deyn PP. (2009). The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111:483–95.
  • Cardiff RD, Miller CH, Munn RJ. (2014). Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc 6:655–658.
  • Case LC, Tessier-Lavigne M. (2005). Regeneration of the adult central nervous system. Curr Biol 15:R749–53.
  • Chauhan MB, Chauhan NB. (2015). Brain uptake of neurotherapeutics after intranasal versus intraperitoneal delivery in mice. J Neurol Neurosurg 2:PMC4567259.
  • Cheng CY, Tang NY, Kao ST, et al. (2016). Ferulic acid administered at various time points protects against cerebral infarction by activating p38 MAPK/p90RSK/CREB/Bcl-2 anti-apoptotic signaling in the subacute phase of cerebral ischemia-reperfusion injury in rats. PloS One 11:e0155748. 
  • Dawson TM, Steiner JP, Dawson VL, et al. (1993). Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. PNAS. V 90:9808–12.
  • Dhar N, Razdan S, Rana S, et al. (2015). A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: prospects and perspectives for pathway engineering. Front Plant Sci 27:1031.
  • Dharmasaroja PA. (2016). Fluid intake related to brain edema in acute middle cerebral artery infarction. Trans Stroke Res 7:49–53.
  • Dhuley JN. (1998). Effect of ashwagandha on lipid peroxidation in stress-induced animals. J Ethnopharmacol 60:173–8. doi: PMID: 9582008.
  • Dhuria SV, Hanson LR, Frey IIW. (2010). Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99:1654–73.
  • Dong X. (2018). Current strategies for brain drug delivery. Theranostics 8:1481–93.
  • Dostovic Z, Dostovic E, Smajlovic D, et al. (2016). Brain edema after ischaemic stroke. Med Arch 70:339.
  • Erdő F, Bors LA, Farkas D, et al. (2018). Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 143:155–70.
  • Farhoudi M, Najafi-Nesheli M, Hashemilar M, et al. (2013). Effect of IMOD™ on the inflammatory process after acute ischemic stroke: a randomized clinical trial. DARU J Pharm Sci 21:26.
  • Fassbender K, Fatar M, Ragoschke A, et al. (2000). Subacute but not acute generation of nitric oxide in focal cerebral ischemia. Stroke 31:2208–11.
  • Ginsberg MD. (2008). Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–89.
  • Graff CL, Pollack GM. (2005). Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 94:1187–95.
  • Hanson LR, Frey WH. (2008). Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 9:S5.
  • Iwasaki Y, Ito S, Suzuki M, et al. (1989). Forebrain ischemia induced by temporary bilateral common carotid occlusion in normotensive rats. J Neurol Sci 90:155–65.
  • Jackman K, Iadecola C. (2015). Neurovascular regulation in the ischemic brain. Antioxid Redox Signal 22:149–60.
  • Jha SK. (2003). Cerebral edema and its management. Med J Armed Forces India 59:326–31.
  • Jiang X, Andjelkovic AV, Zhu L, et al. (2018). Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163:144–71.
  • Jovanović MĆ, Vasiljević I, Ninković M, Jovanović M. (2007). Determination of nitrate by the IE-HPLC-UV method in the brain tissues of Wistar rats poisoned with paraquat. J Serb Chem Soc 72:347–356.
  • Keep RF, Hua Y, Xi G. (2012). Brain water content: a misunderstood measurement? Transl Stroke Res 3:263–5.
  • Kuboyama T, Tohda C, Komatsu K. (2005). Neuritic regeneration and synaptic reconstruction induced by Withanolide A. Br J Pharmacol 144:961–71.
  • Kuboyama T, Tohda C, Zhao J, et al. (2002). Axon-or dendrite-predominant outgrowth induced by constituents from Ashwagandha. Neuroreport 13:1715–20.
  • Kumar G, Mukherjee S, Paliwal P, et al. (2019). Neuroprotective effect of chlorogenic acid in global cerebral ischemia-reperfusion rat model. Naunyn-Schmiedeberg's Arch. Pharmacol 2:1–7.
  • Kumar G, Patnaik R. (2016). Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: an in silico study. Med Hypo 92:35–43.
  • Kumar G, Patnaik R. (2017). Inhibition of gelatinases (MMP-2 and MMP-9) by Withania somnifera phytochemicals confers neuroprotection in stroke: an in silico analysis. Interdiscip Sci 10:722–33.
  • Kurapati KR, Atluri VS, Samikkannu T, Nair MP. (2013). Ashwagandha (Withania somnifera) reverses β-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One 8:e77624.
  • Liu Z, Liu Y, Zhou H, et al. (2017). Epoxyeicosatrienoic acid ameliorates cerebral ischemia-reperfusion injury by inhibiting inflammatory factors and pannexin-1. Mol Med Rep 16:2179–84.
  • Martin Y, Avendaño C, Piedras MJ, Krzyzanowska A. (2010). Evaluation of Evans blue extravasation as a measure of peripheral inflammation. Protoc Exch 10:1919–31.
  • Nagahori T, Nishijima M, Endo S, et al. (1994). Ischemic brain damage induced by repeated brief occlusions of bilateral common carotid artery in rats. Tohoku J Exp Med 172:253–62.
  • Naidu PS, Singh A, Kulkarni SK. (2006). Effect of Withania somnifera root extract on reserpine‐induced orofacial dyskinesia and cognitive dysfunction. Phytother Res 20:140–6.
  • Ogawa S, Kitao Y, Hori O. (2007). Ischemia-induced neuronal cell death and stress response. Antioxid Redox Signal 9:573–87.
  • Pourheydar B, Soleimani Asl S, Azimzadeh M, et al. (2016). Neuroprotective effects of bone marrow mesenchymal stem cells on bilateral common carotid arteries occlusion model of cerebral ischemia in rat. Behav Neurol 2016:1–10.
  • Prakash J, Yadav SK, Chouhan S, Singh SP. (2013). Neuroprotective role of Withania somnifera root extract in maneb–paraquat induced mouse model of Parkinsonism. Neurochem Res 38:972–80.
  • Pujari RR, Vyawahare NS, Kagathara VG. (2011). Evaluation of antioxidant and neuroprotective effect of date palm (Phoenix dactylifera L.) against bilateral common carotid artery occlusion in rats. Indian J Exp Biol 49:627–33.
  • Ramanathan M, Babu CS, Justin A, Shanthakumari S. (2012). Elucidation of neuroprotective role of endogenous GABA and energy metabolites in middle cerebral artery occluded model in rats. IJEB 50:391–7. PMID: 22734249.
  • Rosell A, Lo EH. (2008). Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol 8:82–9.
  • Rosenberg GA, Estrada EY, Dencoff JE. (1998). Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29:2189–94.
  • Rubio FJ, Li X, Liu QR, et al. (2016). Fluorescence activated cell sorting (FACS) and gene expression analysis of Fos-expressing neurons from fresh and frozen rat brain tissue. JOVE 114:e54358.
  • Sadoshima SE, Fujishima MA, Ogata J, et al. (1983). Disruption of blood-brain barrier following bilateral carotid artery occlusion in spontaneously hypertensive rats. A quantitative study. Stroke 14:876–82.
  • Shalavadi MH, Chandrashekhar VM, Ramkishan A, et al. (2013). Neuroprotective activity of Stereospermum suaveolens against global cerebral ischemia rat model. Pharm Biol 51:955–60.
  • Singh RJ, Hogg N, Joseph J, Kalyanaraman B. (1996). Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem 271:18596–603.
  • Stokum JA, Gerzanich V, Simard JM. (2016). Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 36:513–38.
  • Sutherland BA, Minnerup J, Balami JS, Arba F, et al. (2012). Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke 7:407–18.
  • Türeyen K, Vemuganti R, Sailor KA, Dempsey RJ. (2004). Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. J Neurosc Methods 139:203–7.
  • Wahlgren NG. (1997). Neuroprotectants in late clinical development–a status report. Cerebrovasc Dis 7:13–7.
  • Wu X, Wang R, Jiang Q, et al. (2014). Determination of amino acid neurotransmitters in rat hippocampi by HPLC‐UV using NBD‐F as a derivative. Biomed Chrom 28:459–62.
  • Wu G, Zhu L, Yuan X, et al. (2017). Britanin ameliorates cerebral ischemia-reperfusion injury by inducing the Nrf2 protective pathway. Antioxid Redox Signal 27:754–68.
  • Xing C, Arai K, Lo EH, Hommel M. (2012). Pathophysiologic cascades in ischemic stroke. Int J Stroke 7:378–85.
  • Yao L, Xue X, Yu P, et al. (2018). Evans blue dye: a revisit of its applications in biomedicine. Contrast Media Mol Imaging 2018:1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.