Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 8
306
Views
15
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Metabonomics analysis of liver in rats administered with chronic low-dose acrylamide

, , , , &
Pages 894-905 | Received 15 Nov 2019, Accepted 08 Jan 2020, Published online: 20 Jan 2020

References

  • Aoki J. (2004). Mechanisms of lysophosphatidic acid production. Semin Cell Dev Biol 15:477–89.
  • Bektas M, Allende ML, Lee BG, et al. (2010). Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J Biol Chem 285:10880–9.
  • Belhadj Benziane A, Dilmi Bouras A, Mezaini A, et al. (2019). Effect of oral exposure to acrylamide on biochemical and hematologic parameters in Wistar rats. Drug Chem Toxicol 42:157–66.
  • Besaratinia A, Pfeifer GP. (2004). Genotoxicity of acrylamide and glycidamide. J Natl Cancer Inst 96:1023–9.
  • Blasiole DA, Davis RA, Attie AD. (2007). The physiological and molecular regulation of lipoprotein assembly and secretion. Mol Biosyst 3:608–19.
  • Bochkov VN, Oskolkova OV, Birukov KG, et al. (2010). Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–59.
  • Brouwer IA, Katan MB, Zock PL. (2004). Dietary alpha-linolenic acid is associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: a meta-analysis. J Nutr 134:919–22.
  • Cao C, Shi HD, Zhang MY, et al. (2018). Metabonomic analysis of toxic action of long-term low-level exposure to acrylamide in rat serum. Human Exp Toxicol 37:1282–92.
  • Chen D, Liu H, Wang E, et al. (2018). Toxicogenomic evaluation of liver responses induced by acrylamide and glycidamide in male mouse liver. Gen Physiol Biophys 37:175–84.
  • Claudel T, Staels B, Kuipers F. (2005). The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 25:2020–30.
  • Dercksen M, Kulik W, Mienie LJ, et al. (2016). Polyunsaturated fatty acid status in treated isovaleric acidemia patients. Eur J Clin Nutr 70:1123–6.
  • Du LF, Wang H, Xu W, et al. (2013). Application of ultraperformance liquid chromatography/mass spectrometry-based metabonomic techniques to analyze the joint toxic action of long-term low-level exposure to a mixture of organophosphate pesticides on rat urine profile. Toxicol Sci 134:195–206.
  • Enright EF, Joyce SA, Gahan CG, Griffin BT. (2017). Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility. Mol Pharm 14:1251–63.
  • Feng JH, Liu HL, Bhakoo KK, et al. (2011). A metabonomic analysis of organ specific response to USPIO administration. Biomaterials 32:6558–69.
  • Friedman M. (2003). Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem 51:4504–26.
  • Gempel K, Kiechl S, Hofmann S, et al. (2002). Screening for carnitine palmitoyltransferase II deficiency by tandem mass spectrometry. J Inherited Metab Dis 25:17–27.
  • Gerrard JM, Clawson CC, White JG. (1980). Lysophosphatidic acids: III. Enhancement of neutrophil chemotaxis. Am J Pathol 100:609–18.
  • Goedert JJ, Sampson JN, Moore SC, et al. (2014). Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis 35:2089–96.
  • Gonzalez E, van Liempd S, Conde-Vancells J, et al. (2012). Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity. Metabolomics 8:997–1011.
  • Hishikawa D, Hashidate T, Shimizu T, Shindou H. (2014). Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res 55:799–807.
  • Ikeda H, Ohkawa R, Watanabe N, et al. (2010). Plasma concentration of bioactive lipid mediator sphingosine 1-phosphate is reduced in patients with chronic hepatitis C. Clin Chim Acta 411:765–70.
  • Imai T, Kitahashi T. (2014). A 13-week toxicity study of acrylamide administered in drinking water to hamsters. J Appl Toxicol 34:57–65.
  • Korman MG, Hofmann AF, Summerskill WH. (1974). Assessment of activity in chronic active liver disease. Serum bile acids compared with conventional tests and histology. N Engl J Med 290:1399–402.
  • Kurano M, Tsukamoto K, Ohkawa R, et al. (2013). Liver involvement in sphingosine 1-phosphate dynamism revealed by adenoviral hepatic overexpression of apolipoprotein M. Atherosclerosis 229:102–9.
  • Larguinho M, Costa PM, Sousa G, et al. (2014). Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations. J Appl Toxicol 34:1293–302.
  • Liu FJ, Liang D, Miao LY, et al. (2018). Liver-specific metabolomics characterizes the hepatoprotective effect of saponin-enriched Celosiae semen extract on mice with nonalcoholic fatty liver disease. J Funct Foods 42:185–94.
  • Liu M, Seo J, Allegood J, et al. (2014). Hepatic apolipoprotein M (apoM) overexpression stimulates formation of larger apoM/sphingosine 1-phosphate-enriched plasma high density lipoprotein. J Biol Chem 289:2801–14.
  • Lopachin RM. (2005). Acrylamide neurotoxicity: neurological, morhological and molecular endpoints in animal models. Adv Exp Med Biol 561:21–37.
  • Malaguarnera M. (2012). Carnitine derivatives: clinical usefulness. Curr Opin Gastroenterol 28:166–76.
  • Mastrangelo A, Armitage EG, Garcia A, Barbas C. (2014). Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr Top Med Chem 14:2627–36.
  • Nicholson JK. (2006). Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52.
  • Okajima F. (2002). Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 1582:132–7.
  • Pedreschi F, Mariotti MS, Granby K. (2014). Current issues in dietary acrylamide: formation, mitigation and risk assessment. J Sci Food Agric 94:9–20.
  • Peng LJ, Liu L, Peng MZ, Jiang MY. (2012). Application of acylcarnitine analysis on the screening and diagnosis of inherited metabolic diseases. J Appl Clin Pediatr 27:1617−1620.
  • Pierre G, Macdonald A, Gray G, et al. (2007). Prospective treatment in carnitine-acylcarnitine translocase deficiency. J Inherit Metab Dis 30:815.
  • Radwan MA, El-Gendy KS, Gad AF, et al. (2019). Ecotoxicological biomarkers as investigating tools to evaluate the impact of acrylamide on Theba pisana snails. Environ Sci Pollut Res Int 26:14184–93.
  • Rice JM. (2005). The carcinogenicity of acrylamide. Mutat Res 580:3–20.
  • Rubert J, Zachariasova M, Hajslova J. (2015). Advances in high-resolution mass spectrometry based on metabolomics studies for food: a review. Food Additives Contam A Chem Anal Control Exposure Risk Assess 32:1685–708.
  • Scaravilli V, Di Girolamo L, Scotti E, et al. (2018). Effects of sodium citrate, citric acid and lactic acid on human blood coagulation. Perfusion 33:577–83.
  • Semla M, Goc Z, Martiniaková M, et al. (2017). Acrylamide: a common food toxin related to physiological functions and health. Physiol Res 66:205–17.
  • Shao FJ, Ying YT, Tan X, et al. (2018). Metabonomics profiling reveals biochemical pathways associated with pulmonary arterial hypertension in broiler chickens. J Proteome Res 17:3445–53.
  • Shen Z, Wu M, Elson P, et al. (2001). Fatty acid composition of lysophosphatidic acid and lysophosphatidylinositol in plasma from patients with ovarian cancer and other gynecological diseases. Gynecol Oncol 83:25–30.
  • Shi HD, Hu LY, Chen S, et al. (2017). Metabolomics analysis of urine from rats administered with long-term, low-dose acrylamide by ultra-performance liquid chromatography–mass spectrometry. Xenobiotica 47:439–49.
  • Shurubor YI, D’Aurelio M, Clark-Matott J, et al. (2017). Determination of coenzyme A and acetyl-coenzyme A in biological samples using HPLC with UV detection. Molecules 22:1388.
  • St-Pierre MV, Kullak-Ublick GA, Hagenbuch B, Meier PJ. (2001). Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol 204:1673–86.
  • Tareke E, Rydberg P, Karlsson P, et al. (2000). Acrylamide: a cooking carcinogen? Chem Res Toxicol 13:517–22.
  • Tareke E, Rydberg P, Karlsson P, et al. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006.
  • Ticho AL, Malhotra P, Dudeja PK, et al. (2019). Intestinal absorption of bile acids in health and disease. Compr Physiol 10:21–56.
  • Togola A, Coureau C, Guezennec AG, Touzé S. (2015). A sensitive analytical procedure for monitoring acrylamide in environmental water samples by offline SPE-UPLC/MS/MS. Environ Sci Pollut Res Int 22:6407–13.
  • Touzé S, Guerin V, Guezennec AG, et al. (2015). Dissemination of acrylamide monomer from polyacrylamide-based flocculant use-sand and gravel quarry case study. Environ Sci Pollut Res Int 22:6423–30.
  • Van Ravenzwaay B, Cunha GC, Leibold E, et al. (2007). The use of metabolomics for the discovery of new biomarkers of effect. Toxicol Lett 172:21–8.
  • Van Ravenzwaay B, Montoya GA, Fabian E, et al. (2014). The sensitivity of metabolomics versus classical regulatory toxicology from a NOAEL perspective. Toxicol Lett 227:20–8.
  • Von Burg R, Penney DP, Conroy PJ. (1981). Acrylamide neurotoxicity in the mouse: a behavioral, electrophysiological and morphological study. J Appl Toxicol 1:227–33.
  • Wang P, Ji R, Ji J, Chen F. (2019). Changes of metabolites of acrylamide and glycidamide in acrylamide-exposed rats pretreated with blueberry anthocyanins extract. Food Chem 274:611–9.
  • Wang S, Ma A, Song S, et al. (2008). Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients. Hypertens Res 31:623–32.
  • Wang Y, Christopher BA, Wilson KA, et al. (2018). Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine. Am J Physiol Endocrinol Metab 315:E622–33.
  • Want EJ, Masson P, Michopoulos F, et al. (2013). Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protocols 8:17–32.
  • Waters NJ, Holmes E, Williams A, et al. (2001). NMR and pattern recognition studies on the time-related metabolic effects of alpha-naphthylisothiocyanate on liver, urine, and plasma in the rat: an integrative metabonomic approach. Chem Res Toxicol 14:1401–12.
  • WHO. Evaluation of certain contaminants in food: seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. No. 959, technical report series, Meeting. 72nd. 2010. Rome, Italy: WHO.
  • Xiao JF, Varghese RS, Zhou B, et al. (2012). LC-MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian cohort. J Proteome Res 11:5914–23.
  • Yatomi Y. (2006). Sphingosine 1-phosphate in vascular biology: possible therapeutic strategies to control vascular diseases. Curr Pharm Des 12:575–87.
  • Zhang YM, Chohnan S, Virga KG, et al. (2007). Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Chem Biol 14:291–302.
  • Zhou PP, Zhao YF, Liu HL, et al. (2013). Dietary exposure of the Chinese population to acrylamide. Biomed Environ Sci 26:421–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.