Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 10
432
Views
9
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Molecular mechanisms of ethanol biotransformation: enzymes of oxidative and nonoxidative metabolic pathways in human

ORCID Icon, , , , , & show all
Pages 1180-1201 | Received 21 Feb 2020, Accepted 23 Apr 2020, Published online: 13 May 2020

References

  • Ahmed S, Wickremesinghe P, Kopetz V, Sarkar S. (2018). A rare diagnosis of gut fermentation/auto-brewery syndrome in the setting of diabetes and obesity. Am J Clin Pathol 150:S2.
  • Al Saabi A, Allorge D, Sauvage F-L, et al. (2013). Involvement of UDP-glucuronosyltransferases UGT1A9 and UGT2B7 in ethanol glucuronidation, and interactions with common drugs of abuse. Drug Metab Dispos 41:568–74.
  • Al-Awadhi A, Wasfi IA, Al-Reyami F, Al-Hatali Z. (2004). Autobrewing revisited: endogenous concentration of blood ethanol in residents of the United Arab Emirates. Sci Justice 44:149–52.
  • Allali-Hassani A, Martinez SE, Peralba JM, et al. (1997). Alcohol dehydrogenase of human and rat blood vessels. FEBS Lett 405:26–30.
  • Ambroziak W, Pietruszko R. (1993). Metabolic role of aldehyde dehydrogenase. Adv Exp Med Biol 328:5–15.
  • Anjum NA, Sharma P, Gill SS, et al. (2016). Catalase and ascorbate peroxidase – representative-H2O2-detoxifying heme enzymes in plant. Environ Sci Pollut Res 23:19002–29.
  • Bardag-Gorce F, Yuan QX, Li J, et al. (2000). The effect of ethanol-induced cytochrome P450 2E1 in the inhibition of proteasome activity by alcohol. Biochem Biophys Res Commun 279:23–9.
  • Beckemeier ME, Bora PS. (1998). Fatty acid ethyl esters: potentially toxic products of myocardial ethanol metabolism. J Mol Cell Cardiol 30:2487–94.
  • Best CA, Laposata M. (2003). Fatty acid ethyl esters: toxic non-oxidative metabolites of ethanol and markers of ethanol intake. Frontiers Biosci 8:e202–e17.
  • Blacker TS, Duchen MR. (2016). Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100:53–65.
  • Bora PS, Miller DD, Chaitman BR. (1998). Mutagenesis and characterization of specific residues in fatty acid ethyl ester synthase: a gene for alcohol-induced cardiomyopathy. Mol Cell Biochem 180:111–5.
  • Bosron WF, Ehrig T, Li TK. (1993). Genetic factors in alcohol metabolism and alcoholism. Semin Liver Dis 13:126–35.
  • Bosron WF, Magnes LJ, Li T-K. (1983). Human liver alcohol dehydrogenase: ADH Indianapolis results from genetic polymorphism at the ADH2 gene locus. Biochem Genet 21:735–44.
  • Bull-Otterson L, Feng W, Kirpich I, et al. (2013). Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 8:e53028.
  • Caballeria J. (2003). Current concepts in alcohol metabolism. Ann Hepatol 2:60–8.
  • Całka P, Ciesielka M, Buszewicz G, Teresiński G. (2016). Variation in gastric alcohol dehydrogenase and the risk alcohol dependence. Arch Med Sąd Kryminol 3:172–81.
  • Cederbaum AI. (2012). Alcohol metabolism. Clin Liver Dis 16:667–85.
  • Chou C-F, Lai C-L, Chang Y-C, Duester G, et al. (2002). Kinetic mechanism of human class IV alcohol dehydrogenase functioning as retinol dehydrogenase. J Biol Chem 277:25209–16.
  • Cook PF, Cleland WW. (1981). pH variation of isotope effects in enzyme-catalysed reactions. 2. Isotope-dependent step not pH dependent. Kinetic mechanism of alcohol dehydrogenase. Biochemistry 20:1805–15.
  • Cordell B, Mccarthy J. (2013). A case study of gut fermentation syndrome (auto-brewery) with Saccharomyces cerevisiae as the causative organism. Int J Clin Med 4:309–12.
  • Crabb DW, Matsumoto M, Chang D, You M. (2004). Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 63:49–63.
  • Criddle DN, Murphy J, Fistetto G, et al. (2006). Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology 130:781–93.
  • Danko IM, Chaschin NA. (2005). Association of CYP2E1 gene polymorphism with predisposition to cancer development. Exp Onkol 27:248–56.
  • Dettling A, Fischer F, Böhler S, et al. (2007). Ethanol elimination rates in men and women in consideration of the calculated liver weight. Alcohol 41:415–20.
  • Diczfalusy MA, Björkhem I, Einarsson C, et al. (2001). Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids in humans. J Lipid Res 42:1025–32.
  • Dinis-Oliveira RJ. (2016). Oxidative and non-oxidative metabolomics of ethanol. Curr Drug Metab 17:327–35.
  • Padova C, Worner TM, Lieber CS. (1987). The effect of abstinence on the blood acetaldehyde response to a test dose of alcohol in alcoholic. Alcohol Clin Exp Res 11:559–61.
  • Dockham PA, Lee MO, Sladek NE. (1992). Identification of human liver aldehyde dehydrogenases that catalyze the oxidation of aldophosphamide and retinaldehyde. Biochem Pharmacol 43:2453–69.
  • Dubowski KM. (1976). Human pharmacokinetics of ethanol: I. Peak blood concentrations and elimination in male and female subjects. Alcohol Tech Rep 5:55–63.
  • Duester G, Smith M, Bilanchone V, Hatfield GW. (1986). Molecular analysis of the human class I alcohol dehydrogenase gene family and nucleotide sequence of the gene encoding the subunit. J Biol Chem 261:2027–33.
  • Elamin E, Masclee A, Juuti-Uusitalo K, et al. (2013b). Fatty acid ethyl esters induce intestinal epithelial barrier dysfunction via a reactive oxygen species-dependent mechanism in a three-dimensional cell culture model. PLoS One. 8:e58561.
  • Elamin EE, Masclee AA, Dekker J, Jonkers DM. (2013a). Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev 71:483–99.
  • Estonius M, Svensson S, Höög JO. (1996). Alcohol dehydrogenase in human tissues: localization of transcripts coding for five classes of the enzyme. FEBS Lett 397:338–42.
  • ExPasy. (2020). Enzymology database [dataset]. Available from: https://www.expasy.org/ [last accessed 2 Jan 2020].
  • Farres J, Moreno A, Crosas B, et al. (1994). Alcohol dehydrogenase of class IV (σσ-ADH) from human stomach cDNA sequence and structure/function relationships. Eur J Biochem 224:549–57.
  • Forsyth CB, Voigt R, Keshavarzian A. (2014). Intestinal CYP2E1: a mediator of alcohol-induced gut leakiness. Redox Biol 3:40–6.
  • Forsyth CB, Voigt RM, Shaikh M, et al. (2013). Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability. Am J Physiol Gastrointest Liver Physiol 305:G185–95.
  • Foti RS, Fisher MB. (2005). Assessment of UDP-glucuronosyltransferase catalysed formation of ethyl glucuronide in human liver microsomes and recombinant UGTs. Forensic Sci Int 153:109–16.
  • Frezza M, di Padova C, Pozzato G, et al. (1990). High blood alcohol levels in women: the role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med 322:95–9.
  • Fujino T, Kondo J, Ishikawa M, et al. (2001). Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in oxidation of acetate. J Biol Chem 276:11420–6.
  • Garras A, Asiedu DK, Berge RK. (1995). Subcellular localization and induction of NADH-sensitive acetyl-CoA hydrolase and propionyl-CoA hydrolase activities in rat liver under lipogenic conditions after treatment with sulfur-substituted fatty acids. Biochem Biophys Acta 1255:154–60.
  • GenAtlas. (2020). Gene database [dataset]. Available from: http://genatlas.medecine.univ-paris5.fr/ [last accessed 5 Jan 2020].
  • Glorieux C, Zamocky M, Sandoval JM, et al. (2015). Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med 87:84–97.
  • Goyal MM, Basak A. (2012). Hydroxyl radical generation theory: a possible explanation of unexplained actions of mammalian catalase. Int J Biochem Mol Biol 3:282–9.
  • Guo X, Zhang W, Huang R, et al. (2018). The case study of one patient with gut fermentation syndrome: case report and review of the literature. Int J Clin Exp Med 11:4324–9.
  • Haas MJ. (2001). How does the body deal with energy from alcohol? Nutrition 17:677–8.
  • Hahn JA, Anton RF, Javors MA. (2016). The formation, elimination, interpretation and future research needs of phosphatidylethanol (PEth) for research studies and clinical practice. Alcohol Clin Exp Res 40:2292–5.
  • Handler JA, Thurman RG. (1988). Hepatic ethanol metabolism is mediated predominantly by catalase-H2O2 in the fasted state. FEBS Lett 238:139–41.
  • Hasumura Y, Teschke R, Lieber CS. (1975). Hepatic microsomal ethanol oxidizing system (MEOS): dissociation from reduced nicotinamide adenine dinucleotide phosphate-oxidase and possible role of from 1 of cytochrome P-450. J Pharmacol Exp Ther 194:469–74.
  • Heck DE, Shakarjian M, Kim HD, et al. (2010). Mechanisms of oxidant generation by catalase. Ann N Y Acad Sci 1203:120–5.
  • Heier C, Xie H, Zimmermann R. (2016). Nonoxidative ethanol metabolism in humans – from biomarkers to bioactive lipids. IUBMB Life 68:916–23.
  • Helander A, Bottcher M, Fehr C, et al. (2008). Detection times for urinary ethyl glucuronide and ethyl sulphate in heavy drinkers during alcohol detoxification. Alcohol Alcohol 44:55–61.
  • Ho JC, Cheung ST, Leung KL, et al. (2004). Decreased expression of cytochrome P450 2E1 is associated with poor prognosis of hepatocellular carcinoma. Int J Cancer 111:494–500.
  • Høiseth G, Bernard JP, Karinen R, et al. (2007). A pharmacokinetic study of ethyl glucuronide in blood and urine: application to forensic toxicology. Forensic Sci Int 172:119–24.
  • Hovik R, Brodal B, Bartlett K, Osmundsen H. (1991). Metabolism of acetyl-CoA by isolated peroxisomal fractions: formation of acetate and acetoacetyl-CoA. J Lipid Res 32:993–9.
  • Hu Y, Hakkola J, Oscarson M, Ingelman-Sundberg M. (1999). Structural and functional characterization of the 5′-flanking region of the rat and human cytochrome P450 2E1 genes: identification of the polymorphic repeat in the human gene. Biochem Biophys Res Commun 263:286–93.
  • Hu Y, Ingelman-Sundberg M, Lindros KO. (1995). Induction mechanisms of cytochrome P450 2E1 in liver: interplay between ethanol treatment and starvation. Biochem Pharmacol 50:155–61.
  • Human Metabolome Database. (2020). [dataset]. Available from: http://www.hmdb.ca [last accessed 10 Jan 2020].
  • Hurley TD, Edenberg HJ. (2012). Genes encoding enzymes involved in ethanol metabolism. Alcohol Res 34:339–44.
  • Ingelman-Sundberg M, Daly AK, Nebert DW. (2020). Home page of the human cytochrome P450 (CYP) allele nomenclature committee, data from: CYP2E1 allele nomenclature [dataset]. Available from: www.imm.ki.se/CYPalleles/cyp2e1.htm [last accessed 10 Jan 2020].
  • Ingelman-Sundberg M, Johansson I, Yin H, et al. (1993). Ethanol-inducible cytochrome P4502E1: genetic polymorphism, regulation, and possible role in the etiology of alcohol-induced liver disease. Alcohol 10:447–52.
  • Ingólfsson HI, Andersen OS. (2011). Alcohol’s effects on lipid bilayer properties. Biophys J 101:847–55.
  • IUBMB. (2020). Data from: IUBMB enzyme nomenclature [dataset]. Available from: www.hem.qmul.ace.uk/IUBMB/enzyme [last accessed 11 Jan 2020].
  • Javors M, Hill-Kapturczak N, Roache J, et al. (2016). Characterization of the pharmacokinetics of phosphatidylethanol 16:0/18:1 and 16:0/18:2 in human whole blood after alcohol consumption in a clinical lab study. Alcohol Clin Exp Res 40:1228–34.
  • Jelski W, Chrostek L, Szmitkowski M, Laszewicz W. (2002). Activity of class I, II, III and IV alcohol dehydrogenase isoenzymes in human gastric mucosa. Dig Dis Sci 47:1554–7.
  • Jiang Y, Zhang T, Kusumanchi P, et al. (2020). Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines 8:50.
  • Jones BM, Jones MK (1976). Male and female intoxication levels for three alcohol doses, or do women really get higher than men? Alcohol Tech Rep 5:11–14.
  • Jones AW. (2008). Biochemical and physiological research on the disposition and fate of ethanol in the body. In: Garriott IC, ed. Garriott’s medicolegal aspects of alcohol. Tucson (AZ): Lawyers & Judges Publishing Company Inc. 47–155.
  • Jones AW. (2011). Pharmacokinetics of ethanol – issues of forensic importance. Forensic Sci Rev 23:91–136.
  • Kent W. (2012). The pharmacokinetics of alcohol in healthy adults. Pharmacology 3:WMC003291.
  • Hernandez-Munoz R, Caballeria J, Baraona E, et al. (1990). Human gastric alcohol dehydrogenase: its inhibition by H2-receptor antagonists and its effects on the bioavailability of ethanol. Alcohol Clin Exp Res 14:946–50.
  • Khrunin A, Ivanova F, Moisseev A, et al. (2012). Pharmacogenomics of cisplatin-based chemotherapy in ovarian cancer patients of different ethnic origins. Pharmacogenomics 13:171–8.
  • Kikonyogo A, Pietruszko R. (1996). Aldehyde dehydrogenase from adult human brain that dehydrogenates γ-aminobutyraldehyde: purification, characterization, cloning and distribution. Biochem J 316:317–24.
  • Kimura T, Tanaka N, Fujimori N, et al. (2018). Mild drinking habit is a risk factor for hepatocarcinogenesis in non-alcoholic fatty liver disease with advanced fibrosis. World J Gastroenterol 24:1440–50.
  • Koechling UM, Amit Z. (1994). Effects of 3-amino-1,2,4-triazole on brain catalase in the mediation of ethanol consumption in mice. Alcohol 11:235–9.
  • Koop DR. (2006). Alcohol metabolism’s damaging effects on the cell. Alcohol Res Health 29:274–80.
  • Kumar S, Sinha N, Gerth KA, et al. (2017). Specific packaging and circulation of cytochromes P450, especially 2E1 isozyme, in human plasma exosomes and their implications in cellular communications. Biochem Biophys Res Commun 23:675–80.
  • Kurogi K, Davidson G, Mohammed YI, et al. (2012). Ethanol sulfation by the human cytosolic sulfotransferases: a systematic analysis. Biol Pharm Bull 35:2180–5.
  • Laposata EA, Lange LG. (1986). Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231:497–9.
  • Laposata M. (1997). Fatty acid ethyl esters: short-term and long-term serum markers of ethanol intake. Clin Chem 43:1527–34.
  • Laposata M. (1999). Fatty acid ethyl esters: current facts and speculations. Prostaglandins Leukot Essent Fatty Acids 60:313–5.
  • Laposata M, Hasaba A, Best CA, et al. (2002). Fatty acid ethyl esters: recent observations. Prostaglandins Leukot Essent Fatty Acids 67:193–6.
  • Leung TM, Nieto N. (2013). CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J Hepatol 58:395–8.
  • Levitt MD, Li R, Demaster EG, et al. (1997). Use of measurements of ethanol absorption for stomach and intestine to access human ethanol metabolism. Am J Physiol Gastrointest Liver Physiol 273:G951–G7.
  • Li TK, Yin SJ, Crabb DW, et al. (2001). Genetic and environmental influences on alcohol metabolism in humans. Alcohol Clin Exp Res 25:136–44.
  • Lieber CS, Decarli LM. (1968). Ethanol oxidation by hepatic microsomes: adaptive increase after ethanol feeding. Science 162:917–8.
  • Lieber CS, Decarli LM. (1970). Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J Biol Chem 245:2505–12.
  • Lieber CS, Decarli LM. (1972). The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J Pharmacol Exp Ther 181:279–87.
  • Epstein FH, Lieber CS. (1988). Biochemical and molecular basis of alcohol-induced injury to liver and other tissues. N Engl J Med 319:1639–50.
  • Lieber CS. (1994). Metabolic consequences of ethanol. Endocrinologist 4:127–39.
  • Lieber CS. (1997). Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta 257:59–84.
  • Lieber CS. (1999). Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968-1998) – a revive. Alcohol Clin Exp Res 23:991–1007.
  • Lieber CS. (2005). Metabolism of ethanol. Clin Liver Dis 9:1–35.
  • Liisanantti MK, Hannuksela ML, Rämet ME, Savolainen MJ. (2004). Lipoprotein-associated phosphatidylethanol increases the plasma concentration of vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 24:1037–42.
  • Lumeng L, Davis EJ. (1973). The oxidation of acetate by liver mitochondria. FEBS Lett 29:124–6.
  • Maly IP, Sasse D. (1985). Microquantitative determination of the distribution patterns of alcohol dehydrogenase activity in the liver of rat, guinea-pig, and horse. Histochemistry 83:431–6.
  • Maly P, Crotet V, Sasse D. (1999). Spatial distribution of human liver aldehyde dehydrogenase isoenzymes. Histochem Cell Biol 111:461–6.
  • Marchitti SA, Brocker C, Stagos D, Vasiliou V. (2008). Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 4:697–720.
  • Matsunaga N, Ikeda M, Takiguchi T, et al. (2008). The molecular mechanism regulating 24-hour rhythm of CYP2E1 expression in the mouse liver. Hepatology 48:240–51.
  • Michoudet C, Baverel G. (1987). Ethanol synthesis by isolated baboon kidney-cortex tubules. FEBS Lett 216:113–7.
  • Mitchell SC, Waring RH, Wilson ID. (2014). Ethyl sulphate, a chemically reactive human metabolite of ethanol? Xenobiotica 44:957–60.
  • Mittendorfer B, Sidossis LS, Walser E, et al. (1998). Regional acetate kinetics and oxidation in human volunteers. Am J Physiol 274:E978–E83.
  • Mogelson S, Lange LG. (1984). Nonoxidative ethanol metabolism in rabbit myocardium: purification to homogeneity of fatty acyl ethyl ester synthase. Biochemistry 23:4075–81.
  • Moreno A, Peres X. (1991). Purification and characterization of a new alcohol dehydrogenase from human stomach. J Biochem 266:1128–33.
  • Motavalli DM. (2020). Catalase – alcohol metabolism. Medford (MA): Tufts University. Available from: https://sites.tufts.edu/alcoholmetabolism/the-biological-pathway/catalase/ [last accessed 15 Jan 2020].
  • Muggironi G, Fois GR, Diana M. (2013). Ethanol-derived acetaldehyde: pleasure and pain of alcohol mechanism of action. Front Behav Neurosci 7:87.
  • Mukherjee S, DAS SK, Vasudevan DM. (2007). Effects of ethanol consumption on different organs-a brief overview. Asian J Biochem 2:386–94.
  • Nicole S, Skopp G. (2014). Identification and preliminary characterization of UDP-glucuronosyltransferases catalyzing formation of ethyl glucuronide. Anal Bioanal Chem 406:2325–32.
  • Niederhut MS, Gibbons BJ, Perez-Miller S, Hurley TD. (2001). Three-dimensional structures of the three human class I alcohol dehydrogenases. Protein Sci 10:697–706.
  • Niemela O, Parkkila S, Juvonen RO, et al. (2000). Cytochromes P450 2A6, 2E1 and 3A and production of protein-aldehyde adducts in the liver of patients with alcoholic and non-alcoholic liver diseases. J Hepatol 33:893–901.
  • Omodeo-Sale F, Lindi C, Palestini P, Masserini M. (1991). Role of phosphatidylethanol in membranes. Effects on membrane fluidity, tolerance to ethanol, and activity of membrane-bound enzymes. Biochemistry 30:2477–82.
  • Orywal K, Szmitkowski M. (2017). Alcohol dehydrogenase and aldehyde dehydrogenase in malignant neoplasms. Clin Exp Med 17:131–9.
  • Ostberg LJ, Persson B, Hoog J-O. (2016). Computational studies of human class V alcohol dehydrogenase – the odd sibling. BMC Biochem 17:16–24.
  • Ostberg LJ, Stromberg P, Hedberg JJ, et al. (2013). Analysis of mammalian alcohol dehydrogenase 5 (ADH5): characterization of rat ADH5 with comparisons to the corresponding human variant. Chem Biol Interact 202:97–103.
  • Parlesak A, Billinger MHU, Bode C, Bode JC. (2002). Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a Caucasian population. Alcohol Alcohol 37:388–93.
  • Pellock SJ, Redinbo MR. (2017). Glucuronides in the gut: sugar-driven symbioses between microbe and host. J Biol Chem 292:8569–76.
  • Parés X, Cederlund E, Moreno A, et al. (1992). Structural analysis of human σσ-ADH reveals class IV to be variable and confirms the presence of a fifth mammalian alcohol dehydrogenase class. FEBS Lett 303:69–72.
  • Pirmohamed M, Kitteringham NR, Quest LJ, et al. (1995). Genetic polymorphism of cytochrome P4502E1 and risk of alcoholic liver disease in Caucasians. Pharmacogenetics 5:351–7.
  • Pocha C, Xie C. (2019). Hepatocellular carcinoma in alcoholic and non-alcoholic fatty liver disease-one of a kind or two different enemies? Transl Gastroenterol Hepatol 4:72.
  • Pochareddy S. (2010). Transcriptional regulation of the human alcohol dehydrogenases and alcoholism [thesis (PhD)]. Bloomington: Indiana University.
  • Pozzato G, Moretti M, Franzin F, et al. (1995). Ethanol metabolism and aging: the role of “first pass metabolism” and gastric alcohol dehydrogenase activity. J Gerontol A Biol Sci Med Sci 50A:B135–B41.
  • Purohit V, Bode JC, Bode C, et al. (2008). Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences. Alcohol 42:349–61.
  • Rahman MA, Kodidela S, Sinha N, et al. (2019). Plasma exosomes exacerbate alcohol- and acetaminophen-induced toxicity via CYP2E1 pathway. Sci Rep 9:6571.
  • Ramchandani VA. 2013, Genetics of alcohol metabolism. In: Watson RR, ed. Alcohol, nutrition and health consequences. New York (NY): Springer Science & Business Media, 15–25.
  • Ratna A, Mandrekar P. (2017). Alcohol and cancer: mechanisms and therapies. Biomolecules 7:61.
  • Raucy JL, Lasker J, Ozaki K, Zoleta V. (2004). Regulation of CYP2E1 by ethanol and palmitic acid and CYP4A11 by clofibrate in primary cultures of human hepatocytes. Toxicol Sci 79:233–41.
  • Roberts BJ, Soh Y, Bae Y-S, Park SS. (1996). Ethanol induces CYP2E1 by protein stabilization: role of ubiquitin conjugation in the rapid degradation of CYP2E1. J Biol Chem 270:29632–5.
  • Rodwell VW, Bender DA, Botham KM, et al. (2018). Harper’s illustrated biochemistry. New York (NY): McGraw-Hill Education.
  • Salmela KS, Kessova IG, Tsyrlov IB, Lieber CS. (1998). Respective roles of human cytochrome P4502E1, 1A2 and 3A4 in the hepatic microsomal ethanol oxidizing system. Alcohol Clin Exp Res 22:2125–32.
  • Schwab N, Skopp G. (2014). Identification and preliminary characterization of UDP-glucuronosyltransferases catalyzing formation of ethyl glucuronide. Anal Bioanal Chem 406:2325–32. 
  • Seitz HK, Becker P. (2007). Alcohol metabolism and cancer risk. Alcohol Res Health 30:38–47.
  • Seitz HK, Stickel F. (2010). Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr 5:121–8.
  • Seitz HK, Egerer G, Simanowski UA, et al. (1993). Human gastric alcohol dehydrogenase activity: effect of age, gender and alcoholism. Gut 34:1433–7.
  • Setshedi M, Wands JR, Monte SM. (2010). Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev 3:178–85.
  • Singh D, Negi TS, Upadhyay G, Choudhuri G. (2015). Polymorphism of alcohol metabolizing gene ADH3 predisposes to development of alcoholic pancreatitis in North Indian population. Front Mol Biosci 2:67–73.
  • Stewart SH, Koch DG, Burgess DM, et al. (2013). Sensitivity and specificity of urinary ethyl glucuronide and ethyl sulfate in liver disease patients. Alcohol Clin Exp Res 37:150–5.
  • Suju M, Davila M, Poleo G, et al. (1996). Phosphatidylethanol stimulates the plasma-membrane calcium pump from human erythrocytes. Biochem J 317:933–8.
  • Svensson S, Lundsjö A, Cronholm T, Höög JO. (1996). Aldehyde dismutase activity of human liver alcohol dehydrogenase. FEBS Lett 394:217–20.
  • Sze PY. (1975). The permissive effect of glucocorticoids in the induction of liver alcohol dehydrogenase by ethanol. Biochem Med 14:156–61.
  • Takahashi T, Lasker JM, Rosman AS, Lieber CS. (1993). Induction of P450E1 in human liver by ethanol is due to a corresponding increase in encoding mRNA. Hepatology 17:236–45.
  • Terama E, Ollila OHS, Salonen E, et al. (2008). Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. J Phys Chem B 112:4131–9.
  • Teschke R. (2018). Alcoholic liver disease: alcohol metabolism, cascade of molecular mechanisms, cellular targets and clinical aspects. Biomedicines 6:106–57.
  • Teschke R. (2019). Biochemical aspects of the hepatic microsomal ethanol-oxidizing system (MEOS): resolved initial controversies and updated molecular views. Biochem Pharmacol (Los Angel) 8:267–80.
  • Teschke R. (2019). Microsomal ethanol-oxidizing system: success over 50 years and an encouraging future. Alcohol Clin Exp Res 43:386–400.
  • The Human Cytochrome P450 (CYP) Allele Nomenclature Database. (2020). [dataset]. Available from: www.pharmvar.org/htdocs/archive/index_original.htm [last accessed 11 Jan 2020].
  • Tomaszewski M, Buchowicz J. (1972). Alcoholysis of the endogenous phosphate esters in rats treated with large doses of ethanol. Biochem J 129:183–6.
  • Tsujita T, Okuda H. (1994). The synthesis of fatty acid ethyl ester by carboxylester lipase. Eur J Biochem 224:57–62.
  • Tsutsumi M, Lasker JM, Shimizu M, et al. (1989). The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 10:437–46.
  • Umeno M, Mcbride OW, Yang CS, et al. (1988). Human ethanol-inducible P450IIE1: complete gene sequence, promoter characterization, chromosome mapping, and cDNA-directed expression. Biochemistry 27:9006–13.
  • UniProt Knowledgebase. (2020). [Dataset]. Available from: www.uniprot.org [last accessed 11 Jan 2020].
  • Viel G, Boscolo-Berto R, Cecchetto G, et al. (2012). Phosphatidylethanol in blood as a marker of chronic alcohol use: a systematic review and meta-analysis. Int J Mol Sci 13:14788–812.
  • Villeneuve JP, Pichette V. (2004). Cytochrome P450 and liver diseases. Curr Drug Metab 5:273–82.
  • Von Bahr-Lindstrom H, Von Hoog JO, Heden LO, et al. (1986). cDNA and protein structure for the subunit of human liver alcohol dehydrogenase. Biochemistry 25:2465–70.
  • Wartburg IP, Schürch PM. (1968). Atypical human liver alcohol dehydrogenase. Ann New York Acad Sci 151:936–46.
  • Walsham NE, Sherwood RA. (2012). Ethyl glucuronide. Ann Clin Biochem 49:110–7.
  • Walsham NE, Sherwood RA. (2014). Ethyl glucuronide and ethyl sulfate. In: Makowski G, ed. Advances in clinical chemistry. Amsterdam: Elsevier Academic Press, 47–71.
  • Wang XD, Liu C, Chung J, et al. (1998). Chronic alcohol intake reduces retinoic acid concentration and enhances AP-1 (c-Jun and c-Fos) expression in rat liver. Hepatology 28:744–50.
  • Watt RK, Ludden PW. (1999). Nickel-binding proteins. Cell Mol Life Sci 56:604–25.
  • Welch BT, Coelho Prabhu N, Walkoff L, et al. (2016). Auto-brewery syndrome in the setting of long-standing Crohn’s disease: a case report and review of the literature. J Crohns Colitis 10:1448–50.
  • Wetterling T, Dibbelt L, Wetterling G, et al. (2014). Ethyl glucuronide (EtG): better than breathalyser or self-reports to detect covert short-term relapses into drinking. Alcohol Alcohol 49:51–4.
  • Wolff PH. (1972). Ethnic differences in alcohol sensitivity. Science 175:449–50.
  • Wu D, Cederbaum AI. (2003). Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 27:277–84.
  • Yamashita H, Kaneyuki T, Tagawa K. (2001). Production of acetate in the liver and its utilization in peripheral tissues. Biochim Biophys Acta 1532:79–87.
  • Yan AW, Fouts DE, Brandl J, et al. (2011). Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53:96–105.
  • Yasunami M, Chen CS, Yoshida A. (1991). A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme. Proc Natl Acad Sci USA 88:7610–4.
  • Yin SJ, Wang MF, Liao CS, et al. (1990). Identification of a human stomach alcohol dehydrogenase with distinctive kinetic properties. Biochem Int 22:829–35.
  • Yoshida A, Huang IY, Ikawa M. (1984). Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci U S A 81:258–61.
  • Yoshida A, Rzhetsky A, Hsu A, Chang CP. (1998). Human aldehyde dehydrogenase gene family. Eur J Biochem 251:549–57.
  • Yoshida A, Wang G, Dave V. (1983). Determination of genotypes of human aldehyde dehydrogenase ALDH2 locus. Am J Hum Genet 35:1107–16.
  • Yu C-H, Liu S-Y, Panagia V. (1996). The transphosphatidylation activity of phospholipase D. Mol Cell Biochem 157:101–5.
  • Zhang M, Peyear T, Patmanidis I, et al. (2018). Fluorinated alcohols’ effects on lipid bilayer properties. Biophys J 115:679–89.
  • Zimatkin SM, Pronko SP, Vasiliou V, et al. (2006). Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30:1500–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.