Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 12
271
Views
10
CrossRef citations to date
0
Altmetric
Pharmacogenetics

Effects of CYP3A5, ABCB1 and POR*28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation

, , , , , & show all
Pages 1501-1509 | Received 13 Apr 2020, Accepted 22 May 2020, Published online: 10 Jun 2020

References

  • Andrews LM, Hesselink DA, van Schaik R, et al. (2019). A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol 85:601–15.
  • Antignac M, Barrou B, Farinotti R, et al. (2007). Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients. Br J Clin Pharmacol 64:750–7.
  • Anutrakulchai S, Pongskul C, Kritmetapak K, et al. (2019). Therapeutic concentration achievement and allograft survival comparing usage of conventional tacrolimus doses and CYP3A5 genotype-guided doses in renal transplantation patients. Br J Clin Pharmacol 85:1964–73.
  • Bekersky I, Dressler D, Mekki QA. (1999). Dose linearity after oral administration of tacrolimus 1-mg capsules at doses of 3, 7, and 10 mg. Clin Ther 21:2058–64.
  • Bentata Y. (2020). Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif Organs 44:140–52.
  • Birdwell KA, Decker B, Barbarino JM, et al. (2015). Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 98:19–24.
  • Campagne O, Mager DE, Tornatore KM. (2019). Population pharmacokinetics of tacrolimus in transplant recipients: What did we learn about sources of interindividual variabilities? J Clin Pharmacol 59:309–25.
  • Capron A, Mourad M, De Meyer M, et al. (2010). CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics 11:703–14.
  • De Jonge H, Metalidis C, Naesens M, et al. (2011). The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 12:1281–91.
  • Elens L, Hesselink DA, Bouamar R, et al. (2014). Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit 36:71–9.
  • Felipe CR, Silva HT, Machado PG, et al. (2002). The impact of ethnic miscegenation on tacrolimus clinical pharmacokinetics and therapeutic drug monitoring. Clin Transplant 16:262–72.
  • Gijsen VM, van Schaik RH, Soldin OP, et al. (2014). P450 oxidoreductase *28 (POR*28) and tacrolimus disposition in pediatric kidney transplant recipients-a pilot study. Ther Drug Monit 36:152–8.
  • Guy-Viterbo V, Baudet H, Elens L, et al. (2014). Influence of donor-recipient CYP3A4/5 genotypes, age and fluconazole on tacrolimus pharmacokinetics in pediatric liver transplantation: a population approach. Pharmacogenomics 15:1207–21.
  • Han N, Ha S, Yun HY, et al. (2014). Population pharmacokinetic-pharmacogenetic model of tacrolimus in the early period after kidney transplantation. Basic Clin Pharmacol Toxicol 114:400–6.
  • Han N, Yun HY, Hong JY, et al. (2013). Prediction of the tacrolimus population pharmacokinetic parameters according to CYP3A5 genotype and clinical factors using NONMEM in adult kidney transplant recipients. Eur J Clin Pharmacol 69:53–63.
  • Haufroid V, Wallemacq P, VanKerckhove V, et al. (2006). CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant 6:2706–13.
  • Jannot AS, Vuillemin X, Etienne I, et al. (2016). A lack of significant effect of POR*28 allelic variant on tacrolimus exposure in kidney transplant recipients. Ther Drug Monit 38:223–9.
  • Kasiske BL, Zeier MG, Chapman JR, et al. (2010). KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary. Kidney Int 77:299–311.
  • MacPhee IA, Fredericks S, Tai T, et al. (2004). The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 4:914–9.
  • Min SI, Kim SY, Ahn SH, et al. (2010). CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. Transplantation 90:1394–400.
  • Nara M, Takahashi N, Miura M, et al. (2013). Effect of itraconazole on the concentrations of tacrolimus and cyclosporine in the blood of patients receiving allogeneic hematopoietic stem cell transplants. Eur J Clin Pharmacol 69:1321–9.
  • Passey C, Birnbaum AK, Brundage RC, et al. (2011). Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol 72:948–57.
  • Phupradit A, Vadcharavivad S, Ingsathit A, et al. (2018). Impact of POR and CYP3A5 polymorphisms on trough concentration to dose ratio of tacrolimus in the early post-operative period following kidney transplantation. Ther Drug Monit 40:549–57.
  • Prytuła AA, Cransberg K, Bouts AHM, et al. (2016). The effect of weight and CYP3A5 genotype on the population pharmacokinetics of tacrolimus in stable paediatric renal transplant recipients. Clin Pharmacokinet 55:1129–43.
  • Przepiorka D, Blamble D, Hilsenbeck S, et al. (2000). Tacrolimus clearance is age-dependent within the pediatric population. Bone Marrow Transplant 26:601–5.
  • Qin XL, Bi HC, Wang CX, et al. (2010). Study of the effect of Wuzhi tablet (Schisandra sphenanthera extract) on tacrolimus tissue distribu‐tion in rat by liquid chromatography tandem mass spectrometry method. Biomed Chromatogr 24:399–405.
  • Qin XL, Chen X, Wang Y, et al. (2014). In vivo to in vitro effects of six bioactive lignans of Wuzhi tablet (Schisandra sphenanthera extract) on the CYP3A/P-glycoprotein-mediated absorption and metabolism of tacrolimus. Drug Metab Dispos 42:193–9.
  • Resendiz-Galvan JE, Medellin-Garibay SE, Milan-Segovia R, et al. (2019). Dosing recommendations based on population pharmacokinetics of tacrolimus in Mexican adult patients with kidney transplant. Basic Clin Pharmacol Toxicol 124:303–11.
  • Sansone-Parsons A, Krishna G, Martinho M, et al. (2007). Effect of oral posaconazole on the pharmacokinetics of cyclosporine and tacrolimus. Pharmacotherapy 27:825–34.
  • Shuker N, Bouamar R, van Schaik RH, et al. (2016). A randomized controlled trial comparing the efficacy of cyp3a5 genotype‐based with body‐weight‐based tacrolimus dosing after living donor kidney transplantation. Am J Transplant 16:2085–96.
  • Sikma MA, Hunault CC, Huitema A, et al. (2020). Clinical pharmacokinetics and impact of hematocrit on monitoring and dosing of tacrolimus early after heart and lung transplantation. Clin Pharmacokinet 59:403–8.
  • Staatz CE, Goodman LK, Tett SE. (2010). Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 49:141–75.
  • Staatz CE, Tett SE. (2004). Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 43:623–53.
  • Staatz CE, Willis C, Taylor PJ, et al. (2002). Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther 72:660–9.
  • Storset E, Holford N, Midtvedt K, et al. (2014). Importance of hematocrit for a tacrolimus target concentration strategy. Eur J Clin Pharmacol 70:65–77.
  • Tang JT, Andrews LM, van Gelder T, et al. (2016). Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opin Drug Metab Toxicol 12:555–65.
  • Thervet E, Loriot MA, Barbier S, et al. (2010). Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 87:721–6.
  • Wallemacq P, Armstrong VW, Brunet M, et al. (2009). Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit 31:139–52.
  • Wei H, Tao X, Di P, et al. (2013). Effects of traditional Chinese medicine Wuzhi capsule on pharmacokinetics of tacrolimus in rats. Drug Metab Dispos 41:1398–403.
  • Xin HW, Li Q, Wu XC, et al. (2011). Effects of Schisandra sphenanthera extract on the blood concentration of tacrolimus in renal transplant recipients. Eur J Clin Pharmacol 67:1309–11.
  • Zhang GM, Li L, Chen WQ, et al. (2008). The tacrolimus in kidney transplant patients in China population pharmacokinetic study. Acta Pharm Sin 7:695–701.
  • Zhang JJ, Liu SB, Xue L, et al. (2015). The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Int J Clin Pharmacol Ther 53:728–36.
  • Zhang X, Lin G, Tan L, et al. (2018). Current progress of tacrolimus dosing in solid organ transplant recipients: pharmacogenetic considerations. Biomed Pharmacother 102:107–14.
  • Zhao CY, Jiao Z, Mao JJ, et al. (2016). External evaluation of published population pharmacokinetic models of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol 81:891–‐907.
  • Zhu W, Xue L, Peng H, et al. (2018). Tacrolimus population pharmacokinetic models according to CYP3A5/CYP3A4/POR genotypes in Chinese Han renal transplant patients. Pharmacogenomics 19:1013–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.