Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 51, 2021 - Issue 9
155
Views
6
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Roles of cytochrome P450 2A6 in the oxidation of flavone, 4′-hydroxyflavone, and 4′-, 3′-, and 2′-methoxyflavones by human liver microsomes

ORCID Icon, , , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 995-1009 | Received 01 Jun 2021, Accepted 28 Jun 2021, Published online: 04 Aug 2021

References

  • Akashi T, Aoki T, Ayabe S. 1998. Identification of a cytochrome P450 cDNA encoding (2S)-flavanone 2-hydroxylase of licorice (Glycyrrhiza echinata L.; Fabaceae) which represents licodione synthase and flavone synthase II. FEBS Lett. 431(2):287–290.
  • Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Ayabe S. 1999. Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol. 40(11):1182–1186.
  • Arct J, Pytkowska K. 2008. Flavonoids as components of biologically active cosmeceuticals. Clin Dermatol. 26(4):347–357.
  • Breinholt VM, Offord EA, Brouwer C, Nielsen SE, Brøsen K, Friedberg T. 2002. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids. Food Chem Toxicol. 40(5):609–616.
  • Brown RE, Jarvis KL, Hyland KJ. 1989. Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem. 180(1):136–139.
  • Das NP, Griffiths LA. 1966. Studies on flavonoid metabolism. Metabolism of flavone in the guinea pig. Biochem J. 98(2):488–492.
  • DeVore NM, Scott EE. 2012. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone binding and access channel in human cytochrome P450 2A6 and 2A13 enzymes. J Biol Chem. 287(32):26576–26585.
  • Du Y, Chu H, Chu IK, Lo C. 2010. CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice. Plant Physiol. 154(1):324–333.
  • Farkhondeh T, Abedi F, Samarghandian S. 2019. Chrysin attenuates inflammatory and metabolic disorder indices in aged male rat. Biomed Pharmacother. 109:1120–1125.
  • Fliegmann J, Furtwängler K, Malterer G, Cantarello C, Schüler G, Ebel J, Mithöfer A. 2010. Flavone synthase II (CYP93B16) from soybean (Glycine max L.). Phytochemistry. 71(5–6):508–514.
  • Guengerich FP. 2014. Analysis and characterization of enzymes and nucleic acids relevant to toxicology. In: Hayes AW, Kruger CL, editors. Principles and methods of toxicology. 6th ed. Boca Raton, FL: Taylor and Francis; p. 1905–1964.
  • Guengerich FP. 2015. Human cytochrome P450 enzymes. In: Ortiz de MPR, editor. Cytochrome P450: structure, mechanism, and biochemistry. 4th ed. New York: Springer; p. 563–785.
  • Han S, Choi S, Chun Y-J, Yun C-H, Lee CH, Shin HJ, Na HS, Chung MW, Kim D. 2012. Functional characterization of allelic variants of polymorphic human cytochrome P450 2A6 (CYP2A6*5, *7, *8, *18, *19, and *35). Biol Pharm Bull. 35(3):394–399.
  • Hedin PA, Phillips VA. 1992. Electron impact mass spectral analysis of flavonoids. J Agric Food Chem. 40(4):607–611.
  • Hodek P, Trefil P, Stiborová M. 2002. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact. 139(1):1–21.
  • Kagawa H, Takahashi T, Ohta S, Harigaya Y. 2004. Oxidation and rearrangements of flavanones by mammalian cytochrome P450. Xenobiotica. 34(9):797–810.
  • Kakimoto K, Murayama N, Takenaka S, Nagayoshi H, Lim Y-R, Kim V, Kim D, Yamazaki H, Komori M, Guengerich FP, et al. 2019. Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone. Xenobiotica. 49(2):131–142.
  • Kale A, Gawande S, Kotwal S. 2008. Cancer phytotherapeutics: role for flavonoids at the cellular level. Phytother Res. 22(5):567–577.
  • Kim V, Yeom S, Lee Y, Park H-G, Cho M-A, Kim H, Kim D. 2018. In vitro functional analysis of human cytochrome P450 2A13 genetic variants: P450 2A13*2, *3, *4, and *10. J Toxicol Environ Health A. 81(12):493–501.
  • Kim N, Yoo HS, Ju YJ, Oh MS, Lee KT, Inn KS, Kim NJ, Lee JK. 2018. synthetic 3′,4′-dihydroxyflavone exerts anti-neuroinflammatory effects in BV2 microglia and a mouse model. Biomol Ther. 26(2):210–217.
  • Li Q-S, Li C-Y, Li Z-L, Zhu H-L. 2012. Genistein and its synthetic analogs as anticancer agents. Anticancer Agents Med Chem. 12(3):271–281.
  • Liu H, Dong Y, Gao Y, Du Z, Wang Y, Cheng P, Chen A, Huang H. 2016. The Fascinating Effects of Baicalein on Cancer: A Review. IJMS. 17(10):1681.
  • Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. 2018. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 413:11–22.
  • Martens S, Mithöfer A. 2005. Flavones and flavone synthases. Phytochemistry. 66(20):2399–2407.
  • Nabavi SM, Habtemariam S, Daglia M, Nabavi SF. 2015. Apigenin and Breast Cancers: From Chemistry to Medicine. Anticancer Agents Med Chem. 15(6):728–735.
  • Nagayoshi H, Murayama N, Kakimoto K, Takenaka S, Katahira J, Lim YR, Kim V, Kim D, Yamazaki H, Komori M, et al. 2019a. Site-specific oxidation of flavanone and flavone by cytochrome P450 2A6 in human liver microsomes. Xenobiotica. 49(7):791–802.
  • Nagayoshi H, Murayama N, Kakimoto K, Tsujino M, Takenaka S, Katahira J, Lim Y-R, Kim D, Yamazaki H, Komori M, et al. 2019b. Oxidation of flavone, 5-hydroxyflavone, and 5,7-dihydroxyflavone to mono-, di-, and tri-hydroxyflavones by human cytochrome P450 enzymes. Chem Res Toxicol. 32(6):1268–1280.
  • Nagayoshi H, Murayama N, Tsujino M, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP, et al. 2020. Preference for O-demethylation reactions in the oxidation of 2′-, 3′-, and 4′-methoxyflavones by human cytochrome P450 enzymes. Xenobiotica. 50(10):1158–1169.
  • Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. Plant J. 66(1):194–211.
  • Nikolic D, van Breemen RB. 2004. New metabolic pathways for flavanones catalyzed by rat liver microsomes. Drug Metab Dispos. 32(4):387–397.
  • Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem. 239:2370–2378.
  • Parikh A, Gillam EMJ, Guengerich FP. 1997. Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat Biotechnol. 15(8):784–788.
  • Patel D, Shukla S, Gupta S. 2007. Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol. 30(1):233–245.
  • Samarghandian S, Afshari JT, Davoodi S. 2011. Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics (Sao Paulo). 66(6):1073–1079.
  • Sandhu P, Baba T, Guengerich FP. 1993. Expression of modified cytochrome P450 2C10 (2C9) in Escherichia coli, purification, and reconstitution of catalytic activity. Arch Biochem Biophys. 306(2):443–450.
  • Sandhu P, Guo Z, Baba T, Martin MV, Tukey RH, Guengerich FP. 1994. Expression of modified human cytochrome P450 1A2 in Escherichia coli: Stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch Biochem Biophys. 309(1):168–177.
  • Sasaki S, Itagaki Y, Kurokawa T, Watanabe E, Aoyama T. 1966. The mass spectra of flavonoids. Mass Spectroscopy. 14(2):82–92.
  • Schlupper D, Giesa S, Gebhardt R. 2006. Influence of biotransformation of luteolin, luteolin 7-O-glucoside, 3′,4′-dihydroxyflavone and apigenin by cultured rat hepatocytes on antioxidative capacity and inhibition of EGF receptor tyrosine kinase activity. Planta Med. 72(7):596–603.
  • Shen AL, Porter TD, Wilson TE, Kasper CB. 1989. Structural analysis of the FMN binding domain of NADPH-cytochrome P-450 oxidoreductase by site-directed mutagenesis. J Biol Chem. 264(13):7584–7589.
  • Sheng Y, Chen Y, Wang L, Liu G, Li W, Tang Y. 2014. Effects of protein flexibility on the site of metabolism prediction for CYP2A6 substrates. J Mol Graph Model. 54:90–99.
  • Shimada T. 2017. Inhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity. Toxicol Res. 33(2):79–96.
  • Shimada T. 2006. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet. 21(4):257–276.
  • Shimada T, Murayama N, Kakimoto K, Takenaka S, Lim YR, Yeom S, Kim D, Yamazaki H, Guengerich FP, Komori M. 2018. Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants. Xenobiotica. 48(6):565–575.
  • Shimada T, Watanabe J, Inoue K, Guengerich FP, Gillam EMJ. 2001. Specificity of 17beta-oestradiol and benzo[a]pyrene oxidation by polymorphic human cytochrome P4501B1 variants substituted at residues 48, 119 and 432. Xenobiotica. 31(3):163–176.
  • Shimada T, Nagayoshi H, Murayama N, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP. 2021. Liquid chromatography-tandem mass spectrometry analysis of oxidation of 2′-, 3′-, 4′- and 6-hydroxyflavanones by human cytochrome P450 enzymes . Xenobiotica. 51(2):139–154.
  • Su T, Bao ZP, Zhang QY, Smith TJ, Hong JY, Ding X. 2000. Human cytochrome P450 CYP2A13. Predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 60(18):5074–5079.
  • Surichan S, Arroo RR, Ruparelia K, Tsatsakis AM, Androutsopoulos VP. 2018. Nobiletin bioactivation in MDA-MB-468 breast cancer cells by cytochrome P450 CYP1 enzymes. Food Chem Toxicol. 113:228–235.
  • Tanaka Y, Brugliera F. 2013. Flower colour and cytochromes P450. Philos Trans R Soc Lond B Biol Sci. 368:1–14.
  • Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S. 2010. Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci Biotechnol Biochem. 74(9):1760–1769.
  • Tsimogiannis D, Samiotaki M, Panayotou G, Oreopoulou V. 2007. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules. 12(3):593–606.
  • Uno T, Obe Y, Ogura C, Goto T, Yamamoto K, Nakamura M, Kanamaru K, Yamagata H, Imaishi H. 2013. Metabolism of 7-ethoxycoumarin, safrole, flavanone and hydroxyflavanone by cytochrome P450 2A6 variants. Biopharm Drug Dispos. 34(2):87–97.
  • Uno T, Ogura C, Izumi C, Nakamura M, Yanase T, Yamazaki H, Ashida H, Kanamaru K, Yamagata H, Imaishi H. 2015. Point mutation of cytochrome P450 2A6 (a polymorphic variant CYP2A6.25) confers new substrate specificity towards flavonoids. Biopharm Drug Dispos. 36(8):552–563.
  • Walle UK, Walle T. 2007. Bioavailable flavonoids: cytochrome P450-mediated metabolism of methoxyflavones. Drug Metab Dispos. 35(11):1985–1989.
  • Wei K, Chen H. 2018. Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics. 19(1):35–18.
  • Yano JK, Denton TT, Cerny MA, Zhang X, Johnson EF, Cashman JR. 2006. Synthetic inhibitors of cytochrome P-450 2A6: inhibitory activity, difference spectra, mechanism of inhibition, and protein cocrystallization. J Med Chem. 49(24):6987–7001.
  • Yun C-H, Shimada T, Guengerich FP. 1991. Purification and characterization of human liver microsomal cytochrome P-450 2A6. Mol Pharmacol. 40(5):679–685.
  • Zhang S, Yang X, Coburn RA, Morris ME. 2005. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol. 70(4):627–639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.