Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 51, 2021 - Issue 10
148
Views
1
CrossRef citations to date
0
Altmetric
Molecular Toxicology

Intracellular activation of 4-hydroxycyclophosphamide into a DNA-alkylating agent in human leucocytes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1188-1198 | Received 06 Jul 2021, Accepted 27 Aug 2021, Published online: 08 Sep 2021

References

  • Ataya KM, Pydyn EF, Ramahi-Ataya AJ. 1990. The effect of “activated” cyclophosphamide on human and rat ovarian granulosa cells in vitro. Reprod Toxicol. 4(2):121–125.
  • Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. 2014. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev. 35(2):195–233.
  • Berd D, Mastrangelo MJ. 1988. Effect of low dose cyclophosphamide on the immune system of cancer patients: depletion of CD4+, 2H4+ suppressor-inducer T-cells. Cancer Res. 48(6):1671–1675.
  • Bielicki L, Voelcker G, Hohorst HJ. 1983. Enzymatic toxicogenation of “activated” cyclophosphamide by 3'-5' exonucleases. J Cancer Res Clin Oncol. 105(1):27–29.
  • Bielicki L, Voelcker G, Hohorst HJ. 1984. Activated cyclophosphamide: an enzyme-mechanism-based suicide inactivator of DNA polymerase/3'-5' exonuclease. J Cancer Res Clin Oncol. 107(3):195–198.
  • Bischoff E. 2004. Potency, selectivity, and consequences of nonselectivity of PDE inhibition. Int J Impot Res. 16 (Suppl 1):S11–S14.
  • Borch RF, Millard JA. 1987. The mechanism of activation of 4-hydroxycyclophosphamide. J Med Chem. 30(2):427–431.
  • Brieba LG. 2008. Template dependent human DNA polymerases. Curr Top Med Chem. 8(15):1312–1326.
  • Büyüknacar HS, Kumcu EK, Göçmen C, Onder S. 2008. Effect of phosphodiesterase type 4 inhibitor rolipram on cyclophosphamide-induced cystitis in rats. Eur J Pharmacol. 586(1-3):293–299.
  • Colvin M, Brundrett RB, Kan M-NN, Jardine I, Fenselau C. 1976. Alkylating properties of phosphoramide mustard. Cancer Res. 36(3):1121–1126.
  • Crook TR, Souhami RL, McLean AEM. 1986. Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res. 46(10):5029–5034.
  • Cushnir JR, Naylor S, Lamb JH, Farmer PB, Brown NA, Mirkes PE. 1990. Identification of phosphoramide mustard/DNA adducts using tandem mass spectrometry. Rapid Commun Mass Spectrom. 4(10):410–414.
  • Emadi A, Jones RJ, Brodsky RA. 2009. Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol. 6(11):638–647.
  • Engels C, Schwab C, Zhang J, Stevens MJA, Bieri C, Ebert M-O, McNeill K, Sturla SJ, Lacroix C. 2016. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci Rep. 6(1):36246.
  • Fleer R, Brendel M. 1982. Toxicity, interstrand cross-links and DNA fragmentation induced by “'activated' cyclophosphamide in yeast: comparative studies on 4-hydroperoxy-cyclophosphamide, its monofunctional analogon, acrolein, phosphoramide mustard, and nor-nitrogen mustard”. Chem Biol Interact. 39(1):1–15.
  • Frey MW, Nossal NG, Capson TL, Benkovic SJ. 1993. Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'->5' exonuclease activity. Proc Natl Acad Sci USA. 90(7):2579–2583.
  • Glavas NA, Ostenson C, Schaefer JB, Vasta V, Beavo JA. 2001. T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Proc Natl Acad Sci USA. 98(11):6319–6324.
  • Groehler A, 4th Villalta PW, Campbell C, Tretyakova N. 2016. Covalent DNA-protein cross-linking by phosphoramide mustard and nornitrogen mustard in human cells. Chem Res Toxicol. 29(2):190–202.
  • Helsby NA, Yong M, van Kan M, de Zoysa JR, Burns KE. 2019. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Br J Clin Pharmacol. 85(9):1925–1934.
  • Heylmann D, Bauer M, Becker H, van GS, Bacher N, Steinbrink K, Kaina B. 2013. Human CD4 + CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response. PLOS One. 8(12):e83384.
  • Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, Gooley T, Li D, Cherian S, Chen X, Pender BS, Hawkins RM, et al. 2019. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood. 133(17):1876–1887.
  • Jardine I, Fenselau C, Appler M, Kan M-N, Brundrett RB, Colvin M. 1978. Quantitation by gas chromatography-chemical ionization mass spectrometry of cyclophosphamide, phosphoramide mustard, and nornitrogen mustard in the plasma and urine of patients receiving cyclophosphamide therapy. Cancer Res. 38(2):408–415.
  • Kato K, Takeuchi A, Akashi K, Eto M. 2019. Cyclophosphamide-induced tolerance in allogeneic transplantation: from basic studies to clinical application. Front Immunol. 10:3138.
  • Kim DH, Lerner A. 1998. Type 4 cyclic adenosine monophosphate phosphodiesterase as a therapeutic target in chronic lymphocytic leukemia. Blood. 92(7):2484–2494.
  • Kwon CH, Maddison K, LoCastro L, Borch RF. 1987. Accelerated decomposition of 4-hydroxycyclophosphamide by human serum albumin. Cancer Res. 47(6):1505–1508.
  • Liang L, Beshay E, Prud'homme GJ. 1998. The phosphodiesterase inhibitors pentoxifylline and rolipram prevent diabetes in NOD mice. Diabetes. 47(4):570–575.
  • Lutsiak MEC, Semnani RT, De Pascalis R, Kashmiri SVS, Schlom J, Sabzevari H. 2005. Inhibition of CD4 + 25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 105(7):2862–2868.
  • Madelian V, Vigne EL. 1996. Rapid regulation of a cyclic AMP-specific phosphodiesterase (PDE IV) by forskolin and isoproterenol in LRM55 astroglial cells. Biochem Pharmacol. 51(12):1739–1747.
  • Mazur DJ, Perrino FW. 1999. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3'->5' exonucleases. J Biol Chem. 274(28):19655–19660.
  • McDiarmid MA, Iype PT, Kolodner K, Jacobson-Kram D, Strickland PT. 1991. Evidence for acrolein-modified DNA in peripheral blood leukocytes of cancer patients treated with cyclophosphamide. Mutat Res Mol Mech Mutagen. 248(1):93–99.
  • McGown AT, Fox BW. 1986. A proposed mechanism of resistance to cyclophosphamide and phosphoramide mustard in a Yoshida cell line in vitro. Cancer Chemother Pharmacol. 17(3):223–226.
  • Omori K, Kotera J. 2007. Overview of PDEs and their regulation. Circ Res. 100(3):309–327.
  • Reha-Krantz LJ, Nonay RL. 1993. Genetic and biochemical studies of bacteriophage T4 DNA polymerase 3’–>5’-exonuclease activity. J Biol Chem. 268(36):27100–27108.
  • Sakura M, Masuda H, Matsuoka Y, Yokoyama M, Kawakami S, Kihara K. 2009. Rolipram, a specific type-4 phosphodiesterase inhibitor, inhibits cyclophosphamide-induced haemorrhagic cystitis in rats. BJU Int. 103(2):264–269.
  • Struck RF, Kirk MC, Witt MH, Laster WR. 1975. Isolation and mass spectral identification of blood metabolites of cyclophosphamide: evidence for phosphoramide mustard as the biologically active metabolite. Biomed Mass Spectrom. 2(1):46–52.
  • Szczypka M. 2020. Role of phosphodiesterase 7 (PDE7) in T cell activity. Effects of selective PDE7 inhibitors and dual PDE4/7 inhibitors on T cell functions. Int J Mol Sci. 21(17):6118.
  • Tang M, Wang H, Hu Y, Chen W-S, Akao M, Feng Z, Hu W. 2011. Acrolein induced DNA damage, mutagenicity and effect on DNA repair. Mol Nutr Food Res. 55(9):1291–1300.
  • Tisdale MJ. 1977. Interaction of cyclophosphamide and its metabolites with adenosine 3',5'-monophosphate binding proteins. Biochem Pharmacol. 26(16):1469–1474.
  • Traverso I, Fenoglio D, Negrini S, Parodi A, Battaglia F, Kalli F, Conteduca G, Tardito S, Traverso P, Indiveri F, et al. 2012. Cyclophosphamide inhibits the generation and function of CD8(+) regulatory T cells. Hum Immunol. 73(3):207–213.
  • Tsai-Turton M, Luong BT, Tan Y, Luderer U. 2007. Cyclophosphamide-induced apoptosis in COV434 human granulosa cells involves oxidative stress and glutathione depletion. Toxicol Sci. 98(1):216–230.
  • Uzair B, Khan BA, Sharif N, Shabbir F, Menaa F. 2018. Phosphodiesterases (PDEs) from snake venoms: therapeutic applications. Protein Pept Lett. 25(7):612–618.
  • van Kan M, Burns KE, Browett P, Helsby NA. 2019. A higher throughput assay for quantification of melphalan-induced DNA damage in peripheral blood mononuclear cells. Sci Rep. 9(1):18912–18918.
  • Vigone G, Shuhaibar LC, Egbert JR, Uliasz TF, Movsesian MA, Jaffe LA. 2018. Multiple cAMP phosphodiesterases act together to prevent premature oocyte meiosis and ovulation. Endocrinology. 159(5):2142–2152.
  • Voelcker G. 2017. Enzyme catalyzed decomposition of 4-hydroxycyclophosphamide. Open Conf Proc J. 8(1):44–51.
  • Voelcker G, Bielicki L, Hohorst HJ. 1981. Evidence for enzymatic toxification of activated cyclophosphamide (4-hydroxycyclophosphamide). J Cancer Res Clin Oncol. 99(3):A58–A59.
  • Wang P, Wu P, Ohleth KM, Egan RW, Billah MM. 1999. Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol Pharmacol. 56(1):170–174.
  • Wei D, Fabris D, Fenselau C. 1999. Covalent sequestration of phosphoramide mustard by metallothionein—an in vitro study. Drug Metab Dispos. 27(7):786–791.
  • Wu L, Adams M, Parton S, Schafer P. 2012. Phosphodiesterase 4 expression in rheumatoid arthritis synovium and anti-inflammatory effects of apremilast on synovial fibroblasts. ACR Meet Abstr. 2012:A51.
  • Yigitaslan S, Ozatik O, Ozatik FY, Erol K, Sirmagul B, Baseskioglu AB. 2014. Effects of tadalafil on hemorrhagic cystitis and testicular dysfunction induced by cyclophosphamide in rats. Urol Int. 93(1):55–62.
  • Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B. 2010. Selective depletion of CD4 + CD25 + Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70(12):4850–4858.
  • Zon G, Ludeman SM, Brandt JA, Boyd VL, Ozkan G, Egan W, Shao KL. 1984. NMR spectroscopic studies of intermediary metabolites of cyclophosphamide. A comprehensive kinetic analysis of the interconversion of cis- and trans-4-hydroxycyclophosphamide with aldophosphamide and the concomitant partitioning of aldophosphamide between irreversible fragmentation and reversible conjugation pathways. J Med Chem. 27(4):466–485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.