Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 52, 2022 - Issue 8: 50th year of the DMDG
596
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Application of physiologically based pharmacokinetic models for therapeutic proteins and other novel modalities

, , , , &
Pages 840-854 | Received 09 Aug 2022, Accepted 04 Oct 2022, Published online: 20 Dec 2022

References

  • Agarwal S, Allard R, Darcy J, Chigas S, Gu Y, Nguyen T, Bond S, Chong S, Wu J-T, Janas MM. 2021. Impact of serum proteins on the uptake and RNAi activity of GalNAc-conjugated siRNAs. Nucleic Acid Ther. 31(4):309–315.
  • Ayyar VS, Song D, Zheng S, Carpenter T, Heald DL. 2021. Minimal physiologically based pharmacokinetic-pharmacodynamic (mPBPK-PD) model of N-acetylgalactosamine-conjugated small interfering RNA disposition and gene silencing in preclinical species and humans. J Pharmacol Exp Ther. 379(2):134–146.
  • Bai H, Cheng Y, Che J. 2021. Pharmacokinetics and disposition of heparin-binding growth factor midkine antisense oligonucleotide nanoliposomes in experimental animal species and prediction of human pharmacokinetics using a physiologically based pharmacokinetic model. Front Pharmacol. 12:769538.
  • Basu S, Lien YTK, Vozmediano V, Schlender JF, Eissing T, Schmidt S, Niederalt C. 2020. Physiologically based pharmacokinetic modeling of monoclonal antibodies in pediatric populations using PK-sim. Front Pharmacol. 11:868.
  • Belov A, Schultz K, Forshee R, Tegenge MA. 2021. Opportunities and challenges for applying model-informed drug development approaches to gene therapies. CPT Pharmacometrics Syst Pharmacol. 10(4):286–290.
  • Bender B, Leipold DD, Xu K, Shen BQ, Tibbitts J, Friberg LE. 2014. A mechanistic pharmacokinetic model elucidating the disposition of trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) for treatment of metastatic breast cancer. AAPS J. 16(5):994–1008.
  • Bergstrom CT, McKittrick E, Antia R. 2003. Mathematical models of RNA silencing: unidirectional amplification limits accidental self-directed reactions. Proc Natl Acad Sci U S A. 100(20):11511–11516.
  • Betts A, Keunecke A, van Steeg TJ, van der Graaf PH, Avery LB, Jones H, Berkhout J. 2018. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: a comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach. MAbs. 10(5):751–764.
  • Bloomingdale P, Bakshi S, Maass C, van Maanen E, Pichardo-Almarza C, Yadav DB, van der Graaf P, Mehrotra N. 2021. Minimal brain PBPK model to support the preclinical and clinical development of antibody therapeutics for CNS diseases. J Pharmacokinet Pharmacodyn. 48(6):861–871.
  • Bumbaca D, Boswell CA, Fielder PJ, Khawli LA. 2012. Physiochemical and biochemical factors influencing the pharmacokinetics of antibody therapeutics. AAPS J. 14(3):554–558.
  • Cao Y, Balthasar JP, Jusko WJ. 2013. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn. 40(5):597–607.
  • Chang H-Y, Wu S, Chowdhury EA, Shah DK. 2022. Towards a translational physiologically-based pharmacokinetic (PBPK) model for receptor-mediated transcytosis of anti-transferrin receptor monoclonal antibodies in the central nervous system. J Pharmacokinet Pharmacodyn. 49(3):337–362.
  • Chang H-Y, Wu S, Li Y, Guo L, Li Y, Shah DK. 2022. Effect of the size of protein therapeutics on brain pharmacokinetics following systematic administration. AAPS J. 24(3):62.
  • Chang H-Y, Wu S, Meno-Tetang G, Shah DK. 2019. A translational platform PBPK model for antibody disposition in the brain. J Pharmacokinet Pharmacodyn. 46(4):319–338.
  • Chang HP, Li Z, Shah DK. 2022. Development of a physiologically-based pharmacokinetic model for whole-body disposition of MMAE containing antibody-drug conjugate in mice. Pharm Res. 39(1):1–24.
  • Chang HP, Shakhnovich V, Frymoyer A, Funk RS, Becker ML, Park KT, Shah DK. 2022. A population physiologically-based pharmacokinetic model to characterize antibody disposition in pediatrics and evaluation of the model using infliximab. Br J Clin Pharmacol. 88(1):290–302.
  • Chaudhuri G. 1997. Scavenger receptor-mediated delivery of antisense mini-exon phosphorothioate oligonucleotide to Leishmania-infected macrophages. Selective and efficient elimination of the parasite. Biochem Pharmacol. 53(3):385–391.
  • Chen Y, Balthasar JP. 2012. Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. AAPS J. 14(4):850–859.
  • Chigutsa E, Jordie E, Riggs M, Nirula A, Elmokadem A, Knab T, Chien JY. 2022. A quantitative modeling and simulation framework to support candidate and dose selection of anti-SARS-CoV-2 monoclonal antibodies to advance bamlanivimab into a first-in-human clinical trial. Clin Pharmacol Ther. 111(3):595–604.
  • Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. 2021. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev. 170:214–237.
  • Chung S, Nguyen V, Lin YL, Lafrance-Vanasse J, Scales SJ, Lin K, Deng R, Williams K, Sperinde G, Li JJ, et al. 2019. An in vitro FcRn-dependent transcytosis assay as a screening tool for predictive assessment of nonspecific clearance of antibody therapeutics in humans. MAbs. 11(5):942–955.
  • Crooke ST, Liang X-H, Baker BF, Crooke RM. 2021. Antisense technology: a review. J Biol Chem. 296:100416.
  • Dall’Acqua WF, Kiener PA, Wu H. 2006. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem. 281(33):23514–23524.
  • Deen WM, Bridges CR, Brenner BM, Myers BD. 1985. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol. 249(3 Pt 2):F374–F389.
  • Deerberg A, Willkomm S, Restle T. 2013. Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein. Proc Natl Acad Sci U S A. 110(44):17850–17855.
  • Diao L, Meibohm B. 2015. Tools for predicting the PK/PD of therapeutic proteins. Expert Opin Drug Metab Toxicol. 11(7):1115–1125.
  • Dimitrov DS. 2012. Therapeutic proteins. Methods Mol Biol. 899:1–26.
  • Dinh AT, Theofanous T, Mitragotri S. 2005. A model for intracellular trafficking of adenoviral vectors. Biophys J. 89(3):1574–1588.
  • Dua P, Hawkins E, van der Graaf PH. 2015. A tutorial on target-mediated drug disposition (TMDD) models. CPT Pharmacometrics Syst Pharmacol. 4(6):324–337.
  • Eigenmann MJ, Fronton L, Grimm HP, Otteneder MB, Krippendorff BF. 2017. Quantification of IgG monoclonal antibody clearance in tissues. MAbs. 9(6):1007–1015.
  • Fairman K, Li M, Ning B, Lumen A. 2021. Physiologically based pharmacokinetic (PBPK) modeling of RNAi therapeutics: opportunities and challenges. Biochem Pharmacol. 189:114468.
  • Fan Y-Y, Farrokhi V, Caiazzo T, Wang M, O’Hara DM, Neubert H. 2019. Human FcRn tissue expression profile and half-life in PBMCs. Biomolecules. 9(8):373.
  • Fathallah AM, Bankert RB, Balu-Iyer SV. 2013. Immunogenicity of subcutaneously administered therapeutic proteins – a mechanistic perspective. AAPS J. 15(4):897–900.
  • FDA. 2022. Clinical pharmacology considerations for antibody-drug conjugates. Guidance for Industry. Draft Guidance. [accessed 21/07/2022]. https://www.fda.gov/media/155997/download.
  • Ferl GZ, Theil FP, Wong H. 2016. Physiologically based pharmacokinetic models of small molecules and therapeutic antibodies: a mini-review on fundamental concepts and applications. Biopharm Drug Dispos. 37(2):75–92.
  • Ferl GZ, Wu AM, DiStefano JJ 3rd. 2005. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng. 33(11):1640–1652.
  • Fuhrmann S, Kloft C, Huisinga W. 2017. Impact of altered endogenous IgG on unspecific mAb clearance. J Pharmacokinet Pharmacodyn. 44(4):351–374.
  • Gardner I, Gill KL, Li L, Jamei M. 2014. A semi-mechanistic model to predict the renal clearance of therapeutic proteins linked to a whole body PBPK model. [accessed 2022 21/07/2022]. https://www.certara.com/app/uploads/Resources/Posters/Gardner_2014_AAPS_NBC_clearance.pdf.
  • Garg A, Balthasar JP. 2007. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 34(5):687–709.
  • Gibbs JP, Yuraszeck T, Biesdorf C, Xu Y, Kasichayanula S. 2020. Informing development of bispecific antibodies using physiologically based pharmacokinetic-pharmacodynamic models: current capabilities and future opportunities. J Clin Pharmacol. 60(1):S132–S146.
  • Gill KL, Gardner I, Li L, Jamei M. 2016. A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins. AAPS J. 18(1):156–170.
  • Gill KL, Jones HM. 2022. Opportunities and challenges for PBPK model of mAbs in paediatrics and pregnancy. AAPS J. 24(4):72.
  • Glassman PM, Balthasar JP. 2016a. Application of a catenary PBPK model to predict the disposition of "catch and release" anti-PCSK9 antibodies. Int J Pharm. 505(1–2):69–78.
  • Glassman PM, Balthasar JP. 2016b. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. J Pharmacokinet Pharmacodyn. 43(4):427–446.
  • Grewal PK. 2010. The Ashwell-Morell receptor. Methods Enzymol. 479:223–241.
  • Gurbaxani B, Dostalek M, Gardner I. 2013. Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity? Mol Immunol. 56(4):660–674.
  • Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, et al. 2004. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 10(20):7063–7070.
  • Hanke N, Kunz C, Thiemann M, Fricke H, Lehr T. 2019. Translational PBPK modeling of the protein therapeutic and CD95L inhibitor asunercept to develop dose recommendations for its first use in pediatric glioblastoma patients. Pharmaceutics. 11(4):152.
  • Hardiansyah D, Ng CM. 2018. Effects of the FcRn developmental pharmacology on the pharmacokinetics of therapeutic monoclonal IgG antibody in pediatric subjects using minimal physiologically-based pharmacokinetic modelling. MAbs. 10(7):1–13.
  • Henriksen JH, Parving HH, Lassen NA, Winkler K. 1980. Filtration as the main mechanism of increased protein extravasation in liver cirrhosis. Scand J Clin Lab Invest. 40(2):121–128.
  • Hu S, D'Argenio DZ. 2020. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling. J Pharmacokinet Pharmacodyn. 47(5):385–409.
  • Hu S, Datta-Mannan A, D'Argenio DZ. 2022. Physiologically based modeling to predict monoclonal antibody pharmacokinetics in humans from in vitro physiochemical properties. MAbs. 14(1):2056944.
  • Jacobson JM, Kuritzkes DR, Godofsky E, DeJesus E, Larson JA, Weinheimer SP, Lewis ST. 2009. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrob Agents Chemother. 53(2):450–457.
  • Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y, et al. 2017. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A. 114(5):944–949.
  • Jones HM, Tolsma J, Zhang Z, Jasper P, Luo H, Weber GL, Wright K, Bard J, Bell R, Messing D, et al. 2020. A physiologically-based pharmacokinetic model for the prediction of "Half-Life Extension" and "Catch and Release" monoclonal antibody pharmacokinetics. CPT Pharmacometrics Syst Pharmacol. 9(9):534–541.
  • Jones HM, Zhang Z, Jasper P, Luo H, Avery LB, King LE, Neubert H, Barton HA, Betts AM, Webster R. 2019. A physiologically-based pharmacokinetic model for the prediction of monoclonal antibody pharmacokinetics from in vitro data. CPT Pharmacometrics Syst Pharmacol. 8(10):738–747.
  • Kelly RL, Sun T, Jain T, Caffry I, Yu Y, Cao Y, Lynaugh H, Brown M, Vasquez M, Wittrup KD, et al. 2015. High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice. MAbs. 7(4):770–777.
  • Kelly RL, Yu Y, Sun T, Caffry I, Lynaugh H, Brown M, Jain T, Xu Y, Wittrup KD. 2016. Target-independent variable region mediated effects on antibody clearance can be FcRn independent. MAbs. 8(7):1269–1275.
  • Khot A, Matsueda S, Thomas VA, Koya RC, Shah DK. 2019. Measurement and quantitative characterization of whole-body pharmacokinetics of exogenously administered T cells in mice. J Pharmacol Exp Ther. 368(3):503–513.
  • Khot A, Tibbitts J, Rock D, Shah DK. 2017. Development of a translational physiologically based pharmacokinetic model for antibody-drug conjugates: a case study with T-DM1. AAPS J. 19(6):1715–1734.
  • Kierzek AM, Hickling TP, Figueroa I, Kalvass JC, Nijsen M, Mohan K, Veldman GM, Yamada A, Sayama H, Yokoo S, et al. 2019. A quantitative systems pharmacology consortium approach to managing immunogenicity of therapeutic proteins. CPT Pharmacometrics Syst Pharmacol. 8(11):773–776.
  • Klabenkova K, Fokina A, Stetsenko D. 2021. Chemistry of peptide-oligonucleotide conjugates: a review. Molecules. 26(17):5420.
  • Lacroix A, Fakih HH, Sleiman HF. 2020. Detailed cellular assessment of albumin-bound oligonucleotides: increased stability and lower non-specific cell uptake. J Control Release. 324:34–46.
  • Ledley TS, Ledley FD. 1994. Multicompartment, numerical model of cellular events in the pharmacokinetics of gene therapies. Hum Gene Ther. 5(6):679–691.
  • Li L, Chen S-C, Stader F, Rose R, Rao I, Gardner I, Jamei M, Shen B-Q, Yip V, Chen Y, et al. 2017. A whole body physiologically based pharmacokinetic model for antibody drug conjugates – model development and validation in rat. [accessed 21/07/2022]. https://www.certara.com/app/uploads/2017/06/Li_2017_PAGE_rat.pdf.
  • Li L, Gardner I, Dostalek M, Jamei M. 2014. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model. AAPS J. 16(5):1097–1109.
  • Li L, Gardner I, Rose R, Jamei M. 2014. Incorporating target shedding into a minimal PBPK-TMDD model for monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 3:e96.
  • Li T, Balthasar JP. 2018. FcRn expression in wildtype mice, transgenic mice, and in human tissues. Biomolecules. 8(4):115.
  • Li T, Balthasar JP. 2019a. Application of physiologically based pharmacokinetic modeling to predict the effects of FcRn inhibitors in mice, rats, and monkeys. J Pharm Sci. 108(1):701–713.
  • Li T, Balthasar JP. 2019b. Development and evaluation of a physiologically based pharmacokinetic model for predicting the effects of anti-FcRn therapy on the disposition of endogenous IgG in humans. J Pharm Sci. 108(1):714–724.
  • Li Z, Li Y, Chang HP, Yu X, Shah DK. 2021. Two-pore physiologically based pharmacokinetic model validation using whole-body biodistribution of trastuzumab and different-size fragments in mice. J Pharmacokinet Pharmacodyn. 48(5):743–762.
  • Li Z, Shah DK. 2019. Two-pore physiologically based pharmacokinetic model with de novo derived parameters for predicting plasma PK of different size protein therapeutics. J Pharmacokinet Pharmacodyn. 46(3):305–318.
  • Li Z, Yu X, Li Y, Verma A, Chang HP, Shah DK. 2021. A two-pore physiologically based pharmacokinetic model to predict subcutaneously administered different-size antibody/antibody fragments. AAPS J. 23(3):62.
  • Lin W, Chen Y, Unadkat JD, Zhang X, Wu D, Heimbach T. 2022. Applications, challenges, and outlook for PBPK modeling and simulation: a regulatory, industrial and academic perspective. Pharm Res. 39(8):1701–1731.
  • Linnane E, Davey P, Zhang P, Puri S, Edbrooke M, Chiarparin E, Revenko AS, Macleod AR, Norman JC, Ross SJ. 2019. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Res. 47(9):4375–4392.
  • Malik PRV, Edginton A. 2018. Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies. Expert Opin Drug Metab Toxicol. 14(6):585–599.
  • Malik PRV, Edginton AN. 2019. Physiologically-based pharmacokinetic modeling vs. allometric scaling for the prediction of infliximab pharmacokinetics in pediatric patients. CPT Pharmacometrics Syst Pharmacol. 8(11):835–844.
  • Malik PRV, Edginton AN. 2020. Integration of ontogeny into a physiologically based pharmacokinetic model for monoclonal antibodies in premature infants. J Clin Pharmacol. 60(4):466–476.
  • Malik PRV, Hamadeh A, Edginton AN. 2022. Model-based assessment of the contribution of monocytes and macrophages to the pharmacokinetics of monoclonal antibodies. Pharm Res. 39(2):239–250.
  • Malik PRV, Hamadeh A, Phipps C, Edginton AN. 2017. Population PBPK modelling of trastuzumab: a framework for quantifying and predicting inter-individual variability. J Pharmacokinet Pharmacodyn. 44(3):277–290.
  • Metallo SJ. 2010. Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol. 14(4):481–488.
  • Miller CM, Donner AJ, Blank EE, Egger AW, Kellar BM, Østergaard ME, Seth PP, Harris EN. 2016. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res. 44(6):2782–2794.
  • Miller CM, Wan WB, Seth PP, Harris EN. 2018. Endosomal escape of antisense oligonucleotides internalized by stabilin receptors is regulated by Rab5C and EEA1 during endosomal maturation. Nucleic Acid Ther. 28(2):86–96.
  • Miyatake S, Mizobe Y, Tsoumpra MK, Lim KRQ, Hara Y, Shabanpoor F, Yokota T, Takeda S, Aoki Y. 2019. Scavenger receptor class A1 mediates uptake of morpholino antisense oligonucleotide into dystrophic skeletal muscle. Mol Ther Nucleic Acids. 14:520–535.
  • Monine M, Norris D, Wang Y, Nestorov I. 2021. A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration. J Pharmacokinet Pharmacodyn. 48(5):639–654.
  • Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel’in AV, Milstein S, et al. 2014. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 136(49):16958–16961.
  • Nanavati C, McMullen G, Yu R, Geary RS, Henry SP, Wang Y. 2021. Interspecies scaling of human clearance and plasma trough exposure for antisense oligonucleotides: a retrospective analysis of GalNAc3-conjugated and unconjugated-antisense oligonucleotides. Nucleic Acid Ther. 31(4):298–308.
  • Niederalt C, Kuepfer L, Solodenko J, Eissing T, Siegmund HU, Block M, Willmann S, Lippert J. 2018. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim. J Pharmacokinet Pharmacodyn. 45(2):235–257.
  • Ohlson M, Sorensson J, Haraldsson B. 2001. A gel-membrane model of glomerular charge and size selectivity in series. Am J Physiol Renal Physiol. 280(3):F396–F405.
  • Pan X, Stader F, Abduljalil K, Gill KL, Johnson TN, Gardner I, Jamei M. 2020. Development and application of a physiologically-based pharmacokinetic model to predict the pharmacokinetics of therapeutic proteins from full-term neonates to adolescents. AAPS J. 22(4):76.
  • Paramasivam P, Franke C, Stoter M, Hoijer A, Bartesaghi S, Sabirsh A, Lindfors L, Arteta MY, Dahlen A, Bak A, et al. 2022. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J Cell Biol. 221(2):e202110137.
  • Patlak CS, Goldstein DA, Hoffman JF. 1963. The flow of solute and solvent across a two-membrane system. J Theor Biol. 5(3):426–442.
  • Polli JR, Engler FA, Balthasar JP. 2019. Physiologically based modeling of the pharmacokinetics of "Catch-and-Release" anti-carcinoembryonic antigen monoclonal antibodies in colorectal cancer xenograft mouse models. J Pharm Sci. 108(1):674–691.
  • Porter CJ, Charman SA. 2000. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 89(3):297–310.
  • Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. 2019. The neonatal Fc receptor (FcRn): a misnomer? [Review]. Front Immunol. 10(1540):1540.
  • Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al. 2019. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 380(18):1726–1737.
  • Richter WF, Bhansali SG, Morris ME. 2012. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 14(3):559–570.
  • Richter WF, Christianson GJ, Frances N, Grimm HP, Proetzel G, Roopenian DC. 2018. Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. MAbs. 10(5):803–813.
  • Rippe B, Haraldsson B. 1994. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev. 74(1):163–219.
  • Roberts TC, Langer R, Wood MJA. 2020. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 19(10):673–694.
  • Ronzitti G, Gross DA, Mingozzi F. 2020. Human immune responses to adeno-associated virus (AAV) vectors. Front Immunol. 11:670.
  • Rossing N. 1978. Intra- and extravascular distribution of albumin and immunoglobulin in man. Lymphology. 11(4):138–142.
  • Rostami-Hodjegan A. 2012. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther. 92(1):50–61.
  • Samineni D, Ding H, Ma F, Shi R, Lu D, Miles D, Mao J, Li C, Jin J, Wright M, et al. 2020. Physiologically based pharmacokinetic model-informed drug development for polatuzumab vedotin: label for drug–drug interactions without dedicated clinical trials. J Clin Pharmacol. 60(Suppl 1):S120–S131.
  • Sanchez-Felix M, Burke M, Chen HH, Patterson C, Mittal S. 2020. Predicting bioavailability of monoclonal antibodies after subcutaneous administration: open innovation challenge. Adv Drug Deliv Rev. 167:66–77.
  • Sarin H. 2010. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2:14.
  • Sato H, Kato Y, Hayashi E, Tabata T, Suzuki M, Takahara Y, Sugiyama Y. 2002. A novel hepatic-targeting system for therapeutic cytokines that delivers to the hepatic asialoglycoprotein receptor, but avoids receptor-mediated endocytosis. Pharm Res. 19(11):1736–1744.
  • Schmidt K, Prakash TP, Donner AJ, Kinberger GA, Gaus HJ, Low A, Østergaard ME, Bell M, Swayze EE, Seth PP. 2017. Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor. Nucleic Acids Res. 45(5):2294–2306.
  • Sepp A, Berges A, Sanderson A, Meno-Tetang G. 2015. Development of a physiologically based pharmacokinetic model for a domain antibody in mice using the two-pore theory. J Pharmacokinet Pharmacodyn. 42(2):97–109.
  • Sepp A, Meno-Tetang G, Weber A, Sanderson A, Schon O, Berges A. 2019. Computer-assembled cross-species/cross-modalities two-pore physiologically based pharmacokinetic model for biologics in mice and rats. J Pharmacokinet Pharmacodyn. 46(4):339–359.
  • Shah DK, Betts AM. 2012. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 39(1):67–86.
  • Singh AP, Chen W, Zheng X, Mody H, Carpenter TJ, Zong A, Heald DL. 2021. Bench-to-bedside translation of chimeric antigen receptor (CAR) T cells using a multiscale systems pharmacokinetic-pharmacodynamic model: a case study with anti-BCMA CAR-T. CPT Pharmacometrics Syst Pharmacol. 10(4):362–376.
  • Singh AP, Zheng X, Lin-Schmidt X, Chen W, Carpenter TJ, Zong A, Wang W, Heald DL. 2020. Development of a quantitative relationship between CAR-affinity, antigen abundance, tumor cell depletion and CAR-T cell expansion using a multiscale systems PK-PD model. MAbs. 12(1):1688616.
  • Singh R, Moreno M, Stanimirovic D. 2021. Comparison of various approaches to translate non-linear pharmacokinetics of monoclonal antibodies from cynomolgus monkey to human. Eur J Drug Metab Pharmacokinet. 46(4):555–567.
  • Springer TA. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 76(2):301–314.
  • Srivastava A. 2016. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 21:75–80.
  • Stein AM, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, Boyer MW, August KJ, Levine BL, Tomassian L, Shah S, et al. 2019. Tisagenlecleucel model-based cellular kinetic analysis of chimeric antigen receptor-T cells. CPT Pharmacometrics Syst Pharmacol. 8(5):285–295.
  • Sun L, Barter Z, von Moltke L, Rowland Yeo K. 2021. Using physiologically-based pharmacokinetic modeling for predicting the effects of hepatic impairment on the pharmacokinetics of olanzapine and samidorphan given as a combination tablet. CPT Pharmacometrics Syst Pharmacol. 10(9):1071–1080.
  • Tania N, Rao S, Narula J, Zhang Z, Luo H, Ko G, Musante CJ. 2021. QSP-233. Developing a robust Quantitative Systems Pharmacology model of adeno-associated virus based gene therapy for clinical applications. ACoP12; National Harbour, MD.
  • Urva SR, Yang VC, Balthasar JP. 2010. Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci. 99(3):1582–1600.
  • van Putten M, Young C, van den Berg S, Pronk A, Hulsker M, Karnaoukh TG, Vermue R, van Dijk KW, de Kimpe S, Aartsma-Rus A. 2014. Preclinical studies on intestinal administration of antisense oligonucleotides as a model for oral delivery for treatment of Duchenne muscular dystrophy. Mol Ther Nucleic Acids. 3(11):e211.
  • Varga CM, Hong K, Lauffenburger DA. 2001. Quantitative analysis of synthetic gene delivery vector design properties. Mol Ther. 4(5):438–446.
  • Varkhede N, Bommana R, Schoneich C, Forrest ML. 2020. Proteolysis and oxidation of therapeutic proteins after intradermal or subcutaneous administration. J Pharm Sci. 109(1):191–205.
  • Varkhede N, Forrest ML. 2018. Understanding the monoclonal antibody disposition after subcutaneous administration using a minimal physiologically based pharmacokinetic model. J Pharm Pharm Sci. 21(1s):130s–148s.
  • Viola M, Sequeira J, Seica R, Veiga F, Serra J, Santos AC, Ribeiro AJ. 2018. Subcutaneous delivery of monoclonal antibodies: how do we get there? J Control Release. 286:301–314.
  • Waldmann TA, Terry WD. 1990. Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin. J Clin Invest. 86(6):2093–2098.
  • Wang YM, Wang J, Hon YY, Zhou L, Fang L, Ahn HY. 2016. Evaluating and reporting the immunogenicity impacts for biological products – a clinical pharmacology perspective. AAPS J. 18(2):395–403.
  • Wedagedera JR, Afuape A, Chirumamilla SK, Momiji H, Leary R, Dunlavey M, Matthews R, Abduljalil K, Jamei M, Bois FY. 2022. Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers. CPT Pharmacometrics Syst Pharmacol. 11(6):755–765.
  • Wijnsma KL, ter Heine R, Moes DJAR, Langemeijer S, Schols SEM, Volokhina EB, van den Heuvel LP, Wetzels JFM, van de Kar NCAJ, Brüggemann RJ. 2019. Pharmacology, pharmacokinetics and pharmacodynamics of eculizumab, and possibilities for an individualized approach to eculizumab. Clin Pharmacokinet. 58(7):859–874.
  • Williams CS, Leek RD, Robson AM, Banerji S, Prevo R, Harris AL, Jackson DG. 2003. Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol. 200(2):195–206.
  • Wong H, Chow TW. 2017. Physiologically based pharmacokinetic modeling of therapeutic proteins. J Pharm Sci. 106(9):2270–2275.
  • Xu R, Tang H, Chen L, Ge W, Yang J. 2021. Developing a physiologically based pharmacokinetic model of apixaban to predict scenarios of drug-drug interactions, renal impairment and paediatric populations. Br J Clin Pharmacol. 87(8):3244–3254.
  • Yarian F, Alibakhshi A, Eyvazi S, Arezumand R, Ahangarzadeh S. 2019. Antibody-drug therapeutic conjugates: potential of antibody-siRNAs in cancer therapy. J Cell Physiol. 234(10):16724–16738.
  • Yu RZ, Gunawan R, Post N, Zanardi T, Hall S, Burkey J, Kim T-W, Graham MJ, Prakash TP, Seth PP, et al. 2016. Disposition and pharmacokinetics of a GalNAc3-conjugated antisense oligonucleotide targeting human lipoprotein (a) in monkeys. Nucleic Acid Ther. 26(6):372–380.
  • Zhao J, Cao Y, Jusko WJ. 2015. Across-species scaling of monoclonal antibody pharmacokinetics using a minimal PBPK model. Pharm Res. 32(10):3269–3281.
  • Zheng F, Hou P, Corpstein CD, Park K, Li T. 2021. Multiscale pharmacokinetic modeling of systemic exposure of subcutaneously injected biotherapeutics. J Control Release. 337:407–416.
  • Zhu H, Melder RJ, Baxter LT, Jain RK. 1996. Physiologically based kinetic model of effector cell biodistribution in mammals: implications for adoptive immunotherapy. Cancer Res. 56(16):3771–3781.
  • Zou P, Wang F, Wang J, Lu Y, Tran D, Seo SK. 2021. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J Control Release. 336:310–321.
  • Zuo P. 2020. Capturing the magic bullet: pharmacokinetic principles and modeling of antibody-drug conjugates. AAPS J. 22(5):105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.