Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 52, 2022 - Issue 8: 50th year of the DMDG
968
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An HPLC-UV validated bioanalytical method for measurement of in vitro phase 1 kinetics of α-synuclein binding bifunctional compounds

, , , , , & show all
Pages 916-927 | Received 29 Jul 2022, Accepted 22 Oct 2022, Published online: 20 Dec 2022

References

  • Advanced Chromatography Technologies Ltd (ACE). 2020 March 2. The use of mobile phase pH as a method development tool. Chromatography Today. 24–26.
  • Austin RP, Barton P, Cockroft SL, Wenlock MC, Riley RJ. 2002. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos. 30(12):1497–1503.
  • Brundin P, Dave KD, Kordower JH. 2017. Therapeutic approaches to target alpha-synuclein pathology. Exper Neurol. 298(Part B):225–235.
  • Caspar AT, Meyer MR, Maurer HH. 2018. Human cytochrome P450 kinetic studies on six N-2-methoxybenzyl (NBOMe)-derived new psychoactive substances using the substrate depletion approach. Toxicol Lett. 285(November 2017):1–8.
  • Chen K, Chen X. 2010. Design and development of molecular imaging probes. Curr Top Med Chem. 10(12):1227–1236.
  • Chenevert R, Mohammadi-Ziarani G, Caron D, Dasser M. 1999. Chemoenzymatic enantioselective synthesis of (-)-enterolactone. Can J Chem. 77(2):223–226.
  • Davie CA. 2008. A review of Parkinson’s disease. Br Med Bull. 86:109–127.
  • Davies B, Morris T. 1993. Physiological parameters in laboratory animals and humans. Pharm Res. 10(7):1093–1095.
  • Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow CW, Merchant KM, Bezard E, et al. 2015. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol. 14(8):855–866.
  • Fields CR, Bengoa-Vergniory N, Wade-Martins R. 2019. Targeting alpha-synuclein as a therapy for Parkinson’s disease. Front Mol Neurosci. 12(December):1–14.
  • Forno LS. 1996. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol. 55(3):259–272.
  • Ghosh KK, Padmanabhan P, Yang C-T, Mishra S, Halldin C, Gulyás B. 2020. Dealing with PET radiometabolites. EJNMMI Res. 10(1):1–17.
  • Giuliano C, Jairaj M, Zafiu CM, Laufer R. 2005. Direct determination of unbound intrinsic drug clearance in the microsomal stability assay. Drug Metab Dispos. 33(9):1319–1324.
  • Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, et al. 2014. Extrahepatic metabolism at the body’s internal-external interfaces. Drug Metab Rev. 46(3):291–324.
  • Haque EM, Akther M, Azam S, Kim I, Lin Y, Lee Y, Choi D. 2022. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson’s disease. Br J Pharmacol. 179(1):23–45.
  • Hosea NA, Collard WT, Cole S, Maurer TS, Fang RX, Jones H, Kakar SM, Nakai Y, Smith BJ, Webster R, et al. 2009. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J Clin Pharmacol. 49(5):513–533.
  • Jakova E, Moutaoufik MT, Lee JS, Babu M, Cayabyab FS. 2022. Adenosine A1 receptor ligands bind to α-synuclein: implications for α-synuclein misfolding and α-synucleinopathy in Parkinson’s disease. Transl Neurodegener. 11(1):1–26.
  • Jasutkar HG, Oh SE, Mouradian MM. 2022. Therapeutics in the pipeline targeting a-synuclein for Parkinson’s disease. Pharmacol Rev. 74(1):207–237.
  • John F, Muzik O, Mittal S, Juhász C. 2020. Fluorine-18-labeled PET radiotracers for imaging tryptophan uptake and metabolism: a systematic review. Mol Imaging Biol. 22(4):805–819.
  • Kakish J, Allen KJ, Harkness TA, Krol ES, Lee JS. 2016. Novel dimer compounds that bind alpha-synuclein can rescue cell growth in a yeast model overexpressing alpha-synuclein. A possible prevention strategy for Parkinson’s disease. ACS Chem Neurosci. 7(12):1671–1680.
  • Koss DJ, Erskine D, Porter A, Palmoski P, Leite M, Attems J, Outeiro TF. 2021. Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathol Commun. 10:1–18.
  • Krishna DR, Klotz U. 1994. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet. 26(2):144–160.
  • Lin C, Krol E, Alcorn J. 2013. The comparison of rat and human intestinal and hepatic glucuronidation of enterolactone derived from flaxseed lignans. Natl Prod J. 3(3):159–171.
  • Liu YQ, Mao Y, Xu E, Jia H, Zhang S, Dawson VL, Dawson TM, Li YM, Zheng Z, He W, et al. 2021. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today. 36:101027.
  • Lohr JW, Willsky GR, Acara MA. 1998. Renal drug metabolism. Pharmacol Rev. 50(1):107–141.
  • Marotta NP, Ara J, Uemura N, Lougee MG, Meymand ES, Zhang B, Petersson EJ, Trojanowski JQ, Lee VMY. 2021. Alpha-synuclein from patient Lewy bodies exhibits distinct pathological activity that can be propagated in vitro. Acta Neuropathol Commun. 9(1):1–18.
  • Nath A, Atkins WM. 2006. A theoretical validation of the substrate depletion approach to determining kinetic parameters. Drug Metab Dispos. 34(9):1433–1435.
  • Nwabufo CK, Aigbogun OP. 2022. Diagnostic and therapeutic agents that target alpha ‑ synuclein in Parkinson’s disease. J Neurol. 269(11):5762–5786.
  • Nwabufo CK, Aigbogun OP, Allen KJH, Owens MN, Lee JS, Phenix CP, Krol ES. 2021. Employing in vitro metabolism to guide design of F-labelled PET probes of novel α-synuclein binding bifunctional compounds. Xenobiotica. 51(8):885–900.
  • Nwabufo CK, El-Aneed A, Krol ES. 2019. Tandem mass spectrometric analysis of novel caffeine scaffold-based bifunctional compounds for Parkinson’s disease. Rapid Commun Mass Spectrom. 33(23):1792–1803.
  • Obach RS. 2001. The prediction of human clearance from hepatic microsomal metabolism data. Curr Opin Drug Discov Devel. 4(1):36–44.
  • Obach RS, Reed-Hagen AE. 2002. Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos. 30(7):831–837.
  • Otaru S, Niemikoski H, Sarparanta M, Airaksinen AJ. 2020. Metabolism of a bioorthogonal PET tracer candidate [19F/18F]SiFA-tetrazine in mouse liver microsomes: biotransformation pathways and defluorination investigated by UHPLC-HRMS. Mol Pharm. 17(8):3106–3115.
  • Poewe W. 2009. Treatments for Parkinson disease-past achievements and current clinical needs. Neurology. 72(Issue 7, Supplement 2):S65–S73.
  • Rowland M, Benet LZ, Graham GG. 1973. Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm. 1(2):123–136.
  • Samii A, Nutt JG, Ransom BR. 2004. Parkinson’s disease. Lancet. 363(9423):1783–1793.
  • Schneider D, Oskamp A, Holschbach M, Neumaier B, Bauer A, Bier D. 2019. Relevance of in vitro metabolism models to PET radiotracer development: prediction of in vivo clearance in rats from microsomal stability data. Pharmaceuticals. 12(2):12–57.
  • Schwaninger AE, Meyer MR, Barnes AJ, Gorelick DA, Goodwin RS, Huestis MA, Maurer HH. 2011. Investigation on the enantioselectivity of the sulfation of the dihydroxymethamphetamine and 4-hydroxy-3-methoxymethamphetamine using the substrate-depletion approach. Drug Metab Dispos. 39(11):1998–2002.
  • Shihabuddin LS, Brundin P, Greenamyre JT, Stephenson D, Sardi SP. 2018. New frontiers in Parkinson’s disease: from genetics to the clinic. J Neurosci. 38(44):9375–9382.
  • Smith G, Carroll L, Aboagye EO. 2012. New frontiers in the design and synthesis of imaging probes for PET Oncology: current challenges and future directions. Mol Imaging Biol. 14(6):653–666.
  • Sodhi JK, Benet LZ. 2021. Successful and unsuccessful prediction of human hepatic clearance for lead optimization. J Med Chem. 64(7):3546–3559.
  • Turner D B, Rostami-Hodjegan A, Tucker GT, Yeo KR. 2006. Prediction of non-specific hepatic microsomal binding from readily available physicochemical properties. [accessed 2022 Sept 8]. https://www.Certara.Com/Wp-Content/Uploads/Resources/Posters/DavidISSX2006.Pdf.
  • Uno S, Fujii A, Komura H, Kawase A, Iwaki M. 2008. Prediction of metabolic clearance of diclofenac in adjuvant-induced arthritis rats using a substrate depletion assay. Xenobiotica. 38(5):482–495.
  • Uversky VN. 2008. Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci. 9(5):507–540.
  • Vasili E, Dominguez-Meijide A, Flores-León M, Al-Azzani M, Kanellidi A, Melki R, Stefanis L, Outeiro TF. 2022. Endogenous levels of alpha-synuclein modulate seeding and aggregation in cultured cells. Mol Neurobiol. 59(2):1273–1284.
  • Wilkinson GR, Shand DG. 1975. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 18(4):377–390.
  • Williams-Gray CH, Worth PF. 2016. Parkinson’s disease. Medicine. 44(9):542–546.
  • Winiwarter S, Chang G, Desai P, Menzel K, Faller B, Arimoto R, Keefer C, Broccatell F. 2019. Prediction of fraction unbound in microsomal and hepatocyte incubations: a comparison of methods across industry datasets. Mol Pharm. 16(9):4077–4085.
  • Yahi N, Di Scala C, Chahinian H, Fantini J. 2022. Innovative treatment targeting gangliosides aimed at blocking the formation of neurotoxic α-synuclein oligomers in Parkinson’s disease. Glycoconj J. 39(1):1–11.
  • Yedlapudi D, Joshi GS, Luo D, Todi SV, Dutta AK. 2016. Inhibition of alpha-synuclein aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay and an in vivo Drosophila synucleinopathy model. Sci Rep. 6(1):12.
  • Youdim K, Dodia R. 2010. Comparison between recombinant P450s and human liver microsomes in the determination of cytochrome P450 Michaelis–Menten constants. Xenobiotica. 40(4):235–244.
  • Zhang G, Xia Y, Wan F, Ma K, Guo X, Kou L, Yin S, Han C, Liu L, Huang J, et al. 2018. New perspectives on roles of alpha-synuclein in Parkinson’s disease. Front Aging Neurosci. 10:1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.