Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 52, 2022 - Issue 7
1,751
Views
0
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Characterisation of seven medications approved for attention-deficit/hyperactivity disorder using in vitro models of hepatic metabolism

, , , , , ORCID Icon, , , , , & show all
Pages 676-686 | Received 07 Sep 2022, Accepted 25 Oct 2022, Published online: 07 Nov 2022

References

  • Adderall. 2021. [package insert]. Ontario, Canada: Takeda Canada Inc.
  • Aresti-Sanz J, Schwalbe M, Pereira RR, Permentier H, El Aidy S. 2021. Stability of munder various pH conditions in the presence or absence of gut microbiota. Pharmaceuticals. 14(8):733.
  • Bach M, Coutts R, Baker G. 1999. Involvement of CYP2D6 in the in vitro metabolism of amphetamine, two N-alkylamphetamines and their 4-methoxylated derivatives. Xenobiotica. 29(7):719–732.
  • Beckett A, Salmon J, Mitchard M. 2011. The relation between blood levels and urinary excretion of amphetamine under controlled acidic and under fluctuating urinary pH values using [14C] amphetamine. J Pharm Pharmacol. 21(4):251–258.
  • Case DE, Reeves PR. 1975. The disposition and metabolism of ICI 58,834 (viloxazine) in humans. Xenobiotica. 5(2):113–129.
  • Choi CI, Bae JW, Lee YJ, Lee HI, Jang CG, Lee SY. 2014. Effects of CYP2C19 genetic polymorphisms on atomoxetine pharmacokinetics. J Clin Psychopharmacol. 34(1):139–142.
  • Claessens AJ, Risler LJ, Eyal S, Shen DD, Easterling TR, Hebert MF. 2010. CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 38(9):1393–1396.
  • Davis JM, Kopin IJ, Lemberger L, Axelrod J. 1971. Effects of urinary pH on amphetamine metabolism. Ann NY Acad Sci. 179(1):493–501.
  • Dinh JC, Pearce RE, Van Haandel L, Gaedigk A, Leeder JS. 2016. Characterization of atomoxetine biotransformation and implications for development of PBPK models for dose individualization in children. Drug Metab Dispos. 44(7):1070–1079.
  • Drechsler R, Brem S, Brandeis D, Grünblatt E, Berger G, Walitza S. 2020. ADHD: current concepts and treatments in children and adolescents. Neuropediatrics. 51(5):315–335.
  • Dring LG, Smith R, Williams R. 1970. The metabolic fate of amphetamine in man and other species. Biochem J. 116(3):425–435.
  • Dücker C, Brockmöller J. 2021. How precise is quantitative prediction of pharmacokinetic effects due to drug-drug interactions and genotype from in vitro data? A comprehensive analysis on the example CYP2D6 and CYP2C19 substrates. Pharmacol Ther. 217:107629.
  • Faraj B, Israili Z, Perel J, Jenkins M, Holtzman S, Cucinell S, Dayton P. 1974. Metabolism and disposition of methylphenidate-14C: studies in man and animals. J Pharmacol Exp Ther. 191(3):535–547.
  • FDA. 2021. FDA: drug development and drug interactions table of substrates, inhibitors and inducers. Silver Spring (MD): United States Food and Drug Administration.
  • Huang W, Czuba LC, Isoherranen N. 2020. Mechanistic PBPK modeling of urine pH effect on renal and systemic disposition of methamphetamine and amphetamine. J Pharmacol Exp Ther. 373(3):488–501.
  • Inoue Y, Morita H, Nozawa K, Kanazu T. 2019. Metabolite profiling of guanfacine in plasma and urine of healthy Japanese subjects after oral administration of guanfacine extended‐release tablets. Biopharm Drug Dispos. 40(8):282–293.
  • Intuniv. 2019. [package insert]. Lexington, MA: Shire US Inc.
  • Jia L, Liu X. 2007. The conduct of drug metabolism studies considered good practice (II): in vitro experiments. Curr Drug Metab. 8(8):822–829.
  • Kapvay. 2020. [package insert]. Dublin, Ireland: concordia pharmaceuticals.
  • Kazmi F, Yerino P, Miller D, Lyon KC, Wiegand C, Lafreniere E, Mueller R, McKinney S, Hodes E, Campbell RR. 2014. The use of pooled plated cryopreserved human hepatocytes for the determination of metabolic clearance, cytochrome P450 enzyme induction and uptake transporter studies. Drug Metab Dispos. 37:2045–2054.
  • Kazmi F, Yerino P, Ogilvie BW, Usuki E, Chladek J, Buckley DB. 2014. Assessment under initial rate conditions of the selectivity and time course of cytochrome P450 inactivation in pooled human liver microsomes and hepatocytes: optimization of inhibitor conditions used for reaction phenotyping studies. Drug Metab Rev.
  • Kiechel J. 1980. Pharmacokinetics and metabolism of guanfacine in man: a review. Br J Clin Pharmacol. 10(S1):25S–32S.
  • Kimko HC, Cross JT, Abernethy DR. 1999. Pharmacokinetics and clinical effectiveness of methylphenidate. Clin Pharmacokinet. 37(6):457–470.
  • Li XY, Hu XX, Yang F, Yuan LJ, Cai JP, Hu GX. 2019. Effects of 24 CYP2D6 variants found in Chinese population on the metabolism of clonidine in vitro. Chem Biol Interact. 313:108840.
  • Lu C, Di L. 2020. In vitro and in vivo methods to assess pharmacokinetic drug–drug interactions in drug discovery and development. Biopharm Drug Dispos. 41(1–2):3–31.
  • Madan A, Parkinson A, Faiman MD. 1993. Role of flavin-dependent monooxygenases and cytochrome P450 enzymes in the sulfoxidation of S-methyl N, N-diethylthiolcarbamate. Biochem Pharmacol. 46(12):2291–2297.
  • Poulsen L, Hyslop R, Ziegler D. 1979. S-Oxygenation of N-substituted thioureas catalyzed by the pig liver microsomal FAD-containing monooxygenase. Arch Biochem Biophys. 198(1):78–88.
  • Ring BJ, Gillespie JS, Eckstein JA, Wrighton SA. 2002. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos. 30(3):319–323.
  • Sauer JM, Ponsler GD, Mattiuz EL, Long AJ, Witcher JW, Thomasson HR, Desante KA. 2003. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos. 31(1):98–107.
  • Sauer JM, Ring BJ, Witcher JW. 2005. Clinical pharmacokinetics of atomoxetine. Clin Pharmacokinet. 44(6):571–590.
  • Schoretsanitis G, de Leon J, Eap CB, Kane JM, Paulzen M. 2019. Clinically significant drug–drug interactions with agents for attention-deficit/hyperactivity disorder. CNS Drugs. 33(12):1201–1222.
  • Stage C, Dalhoff K, Rasmussen HB, Schow Guski L, Thomsen R, Bjerre D, Ferrero-Miliani L, Busk Madsen M, Jürgens G. 2019. The impact of human CES1 genetic variation on enzyme activity assessed by ritalinic acid/methylphenidate ratios. Basic Clin Pharmacol Toxicol. 125(1):54–61.
  • Stage C, Jürgens G, Guski LS, Thomsen R, Bjerre D, Ferrero-Miliani L, Lyauk YK, Rasmussen HB, Dalhoff K, Consortium I, et al. 2017. The impact of CES1 genotypes on the pharmacokinetics of methylphenidate in healthy Danish subjects. Br J Clin Pharmacol. 83(7):1506–1514.
  • Sun Z, Murry DJ, Sanghani SP, Davis WI, Kedishvili NY, Zou Q, Hurley TD, Bosron WF. 2004. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A1. J Pharmacol Exp Ther. 310(2):469–476.
  • Wan SH, Matin SB, Azarnoff DL. 1978. Kinetics, salivary excretion of amphetamine isomers, and effect of urinary pH. Clin Pharmacol Ther. 23(5):585–590.
  • Wolff J, Hefner G, Normann C, Kaier K, Binder H, Domschke K, Hiemke C, Marschollek M, Klimke A. 2021. Predicting the risk of drug–drug interactions in psychiatric hospitals: a retrospective longitudinal pharmacovigilance study. BMJ Open. 11(4):e045276.
  • Yang X, Atkinson K, Di L. 2016. Novel cytochrome P450 reaction phenotyping for low-clearance compounds using the hepatocyte relay method. Drug Metab Dispos. 44(3):460–465.
  • Yu C. 2020. Metabolism and in vitro drug–drug interaction assessment of viloxazine. Xenobiotica. 50(11):1285–1300.