Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 52, 2022 - Issue 7
117
Views
9
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Newly identified tree shrew cytochrome P450 2B6 (CYP2B6) and pig CYP2B6b are functional drug-metabolising enzymes

ORCID Icon, , ORCID Icon, , , , & ORCID Icon show all
Pages 687-696 | Received 13 Oct 2022, Accepted 25 Oct 2022, Published online: 03 Nov 2022

References

  • Barnes HJ, Arlotto MP, Waterman MR. 1991. Expression and enzymatic activity of recombinant cytochrome P450 17α-hydroxylase in Escherichia coli. Proc Natl Acad Sci U S A. 88(13):5597–5601.
  • Cao J, Yang EB, Su JJ, Li Y, Chow P. 2003. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol. 32(3):123–130.
  • Domanski TL, Halpert JR. 2001. Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Curr Drug Metab. 2(2):117–137.
  • Domanski TL, He YQ, Scott EE, Wang Q, Halpert JR. 2001. The role of cytochrome 2B1 substrate recognition site residues 115, 294, 297, 298, and 362 in the oxidation of steroids and 7-alkoxycoumarins. Arch Biochem Biophys. 394(1):21–28.
  • Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, et al. 2013. Genome of the Chinese tree shrew. Nat Commun. 4:1426.
  • Gervot L, Rochat B, Gautier JC, Bohnenstengel F, Kroemer H, de Berardinis V, Martin H, Beaune P, de Waziers I. 1999. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics. 9(3):295–306.
  • Gotoh O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem. 267(1):83–90.
  • Heikkinen AT, Friedlein A, Matondo M, Hatley OJ, Petsalo A, Juvonen R, Galetin A, Rostami-Hodjegan A, Aebersold R, Lamerz J, et al. 2015. Quantitative ADME proteomics – CYP and UGT enzymes in the beagle dog liver and intestine. Pharm Res. 32(1):74–90.
  • Hu S, Wang H, Knisely AA, Reddy S, Kovacevic D, Liu Z, Hoffman SM. 2008. Evolution of the CYP2ABFGST gene cluster in rat, and a fine-scale comparison among rodent and primate species. Genetica. 133(2):215–226.
  • Iwata H, Fujita K, Kushida H, Suzuki A, Konno Y, Nakamura K, Fujino A, Kamataki T. 1998. High catalytic activity of human cytochrome P450 co-expressed with human NADPH-cytochrome P450 reductase in Escherichia coli. Biochem Pharmacol. 55(8):1315–1325.
  • Kojima M, Degawa M. 2016. Sex differences in constitutive mRNA levels of CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46 in the pig liver: comparison between Meishan and Landrace pigs. Drug Metab Pharmacokinet. 31(3):185–192.
  • Kojima M, Morozumi T. 2004. Cloning of six full-length cDNAs encoding pig cytochrome P450 enzymes and gene expression of these enzymes in the liver and kidney. Journal of Health Science. 50(5):518–529.
  • Lang T, Klein K, Fischer J, Nüssler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM. 2001. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics. 11(5):399–415.
  • Lin HL, Zhang H, Kenaan C, Hollenberg PF. 2016. Roles of residues F206 and V367 in human CYP2B6: effects of mutations on androgen hydroxylation, mechanism-based inactivation, and reversible inhibition. Drug Metab Dispos. 44(11):1771–1779.
  • Martinez MN, Antonovic L, Court M, Dacasto M, Fink-Gremmels J, Kukanich B, Locuson C, Mealey K, Myers MJ, Trepanier L. 2013. Challenges in exploring the cytochrome P450 system as a source of variation in canine drug pharmacokinetics. Drug Metab Rev. 45(2):218–230.
  • Martinez SE, Andresen MC, Zhu Z, Papageorgiou I, Court MH. 2020. Pharmacogenomics of poor drug metabolism in greyhounds: cytochrome P450 (CYP) 2B11 genetic variation, breed distribution, and functional characterization. Sci Rep. 10(1):69.
  • Martinez SE, Shi J, Zhu HJ, Perez Jimenez TE, Zhu Z, Court MH. 2019. Absolute quantitation of drug-metabolizing cytochrome P450 enzymes and accessory proteins in dog liver microsomes using label-free standard-free analysis reveals interbreed variability. Drug Metab Dispos. 47(11):1314–1324.
  • Mayumi K, Hanioka N, Masuda K, Koeda A, Naito S, Miyata A, Narimatsu S. 2013. Characterization of marmoset CYP2B6: cDNA cloning, protein expression and enzymatic functions. Biochem Pharmacol. 85(8):1182–1194.
  • Nannelli A, Chirulli V, Longo V, Gervasi PG. 2008. Expression and induction by rifampicin of CAR- and PXR-regulated CYP2B and CYP3A in liver, kidney and airways of pig. Toxicology. 252(1-3):105–112.
  • Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. 2004. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics. 14(1):1–18.
  • Oshio T, Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. 2019. Marmoset cytochrome P450 2B6, a propofol hydroxylase expressed in liver. Xenobiotica. 49(3):265–269.
  • Puccinelli E, Gervasi PG, Longo V. 2011. Xenobiotic metabolizing cytochrome P450 in pig, a promising animal model. Curr Drug Metab. 12(6):507–525.
  • Rasmussen MK, Scavenius C, Gerbal-Chaloin S, Enghild J. 2019. Sex dictates the constitutive expression of hepatic cytochrome P450 isoforms in Gottingen minipigs. Toxicol Lett. 314:181–186.
  • Shimada T, Tsumura F, Yamazaki H. 1999. Prediction of human liver microsomal oxidations of 7-ethoxycoumarin and chlorzoxazone with kinetic parameters of recombinant cytochrome P-450 enzymes. Drug Metab Dispos. 27(11):1274–1280.
  • Tsukiyama-Kohara K, Kohara M. 2014. Tupaia belangeri as an experimental animal model for viral infection. Exp Anim. 63(4):367–374.
  • Uno Y, Fujino H, Kito G, Kamataki T, Nagata R. 2006. CYP2C76, a novel cytochrome P450 in cynomolgus monkey, is a major CYP2C in liver, metabolizing tolbutamide and testosterone. Mol Pharmacol. 70(2):477–486.
  • Uno Y, Iwasaki K, Yamazaki H, Nelson DR. 2011. Macaque cytochromes P450: nomenclature, transcript, gene, genomic structure, and function. Drug Metab Rev. 43(3):346–361.
  • Uno Y, Shimizu M, Ogawa Y, Makiguchi M, Kawaguchi H, Yamato O, Ishizuka M, Yamazaki H. 2022. Molecular and functional characterization of flavin-containing monooxygenases in pigs, dogs, and cats. Biochem Pharmacol. 202:115125.
  • Wang H, Negishi M. 2003. Transcriptional regulation of cytochrome p450 2B genes by nuclear receptors. Curr Drug Metab. 4(6):515–525.
  • Yamazaki H, Ueng YF, Shimada T, Guengerich FP. 1995. Roles of divalent metal ions in oxidations catalyzed by recombinant cytochrome P450 3A4 and replacement of NADPH–cytochrome P450 reductase with other flavoproteins, ferredoxin, and oxygen surrogates. Biochemistry. 34(26):8380–8389.
  • Yamazaki M, Shimizu M, Uno Y, Yamazaki H. 2014. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs. Biochem Pharmacol. 90(2):159–165.
  • Yun CH, Ahn T, Guengerich FP. 1998. Conformational change and activation of cytochrome P450 2B1 induced by salt and phospholipid. Arch Biochem Biophys. 356(2):229–238.
  • Zanger UM, Klein K. 2013. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet. 4:24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.