Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 53, 2023 - Issue 5
207
Views
2
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Physiologically based pharmacokinetic modeling (PBPK) to predict drug-drug interactions for encorafenib. Part II. Prospective predictions in hepatic and renal impaired populations with clinical inhibitors and inducers

, &
Pages 339-356 | Received 29 Jun 2023, Accepted 06 Aug 2023, Published online: 29 Aug 2023

References

  • Betrosian AP, Agarwal B, Douzinas EE. 2007. Acute renal dysfunction in liver diseases. World J Gastroenterol. 13(42):5552–5559. doi: 10.3748/wjg.v13.i42.5552.
  • Bhatnagar S, Mukherjee D, Salem AH, Miles D, Menon RM, Gibbs JP. 2021. Dose adjustment of venetoclax when co-administered with posaconazole: clinical drug–drug interaction predictions using a PBPK approach. Cancer Chemother Pharmacol. 87(4):465–474. doi: 10.1007/s00280-020-04179-w.
  • Chen Y, Cabalu TD, Callegari E, Einolf H, Liu L, Parrott N, Peters SA, Schuck E, Sharma P, Tracey H, et al. 2019. Recommendations for the Design of Clinical Drug–Drug Interaction Studies With Itraconazole Using a Mechanistic Physiologically‐Based Pharmacokinetic Model. CPT Pharmacometrics Syst Pharmacol. 8(9):685–695. doi: 10.1002/psp4.12449.
  • Clinical Trial. 2021. Hepatic impairment study of encorafenib in combination with binimetinib in BRAF melanoma. [accessed 2023 Jun 15]. https://classic.clinicaltrials.gov/ct2/show/NCT04759846.
  • Cui C, Valerie Sia JE, Tu S, Li X, Dong Z, Yu Z, Yao X, Hatley O, Li H, Liu D, et al. 2021. Development of a physiologically based pharmacokinetic (PBPK) population model for Chinese elderly subjects. Br J Clin Pharmacol. 87(7):2711–2722. doi: 10.1111/bcp.14609.
  • Del Frari L, Lukacova V, Reddy M. 2023. Real world impact + regulatory decision making track poster presentation: building of encorafenib physiologically based pharmacokinetic model and its qualification to predict drug drug interaction with posaconazole. MIDD 2023. Conference, Simulations-Plus. [accessed 2023 Jun 15]. https://www.simulations-plus.com/wp-content/uploads/Laurence_DelFrari-MIDD_16FEB2023.pdf.
  • Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, et al. 2018. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 19(10):1315–1327. doi: 10.1016/S1470-2045(18)30497-2.
  • El-Khateeb E, Darwich AS, Achour B, Athwal V, Rostami-Hodjegan A. 2021. Review article: time to revisit Child-Pugh score as the basis for predicting drug clearance in hepatic impairment. Aliment Pharmacol Ther. 54(4):388–401. doi: 10.1111/apt.16489.
  • EMA. 2013. Guideline on the investigation of drug interactions. [accessed 2023 Jun 15]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf.
  • EMA. 2018a. Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation. [accessed 2023 Jun 15]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation_en.pdf.
  • EMA. 2018b. Encorafenib summary of product characteristics. [accessed 2023 Jun 15]. https://www.ema.europa.eu/en/documents/product-information/braftovi-epar-product-information_en.pdf.
  • EMA. 2018c. Encorafenib public assessment report. [accessed 2023 Aug 4]. https://www.ema.europa.eu/en/documents/assessment-report/braftovi-epar-public-assessment-report_en.pdf.
  • Ervine CM, Houston JB. 1994. Disposition of azole antifungal agents. III. Binding of fluconazole and other azoles in rat liver. Pharm Res. 11(7):961–965. doi: 10.1023/a:1018918917046.
  • Franchetti Y, Nolin TD. 2020. Dose optimization in kidney disease: opportunities for PBPK modeling and simulation. J Clin Pharmacol. 60 Suppl 1(S1):S36–S51. doi: 10.1002/jcph.1741.
  • Gerner B, Scherf-Clavel O. 2021. Physiologically based pharmacokinetic modelling of cabozantinib to simulate enterohepatic recirculation, drug–drug interaction with rifampin and liver impairment. Pharmaceutics. 13(6):778. doi: 10.3390/pharmaceutics13060778.
  • Gill J, Moullet M, Martinsson A, Miljković F, Williamson B, Arends RH, Pilla Reddy V. 2022. Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug–drug interaction prediction. CPT Pharmacometrics Syst Pharmacol. 11(12):1560–1568. doi: 10.1002/psp4.12870.
  • Guest EJ, Aarons L, Houston JB, Rostami-Hodjegan A, Galetin A. 2011. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug-drug interactions. Drug Metab Dispos. 39(2):170–173. doi: 10.1124/dmd.110.036103.
  • Heimbach T, Chen Y, Chen J, Dixit V, Parrott N, Peters SA, Poggesi I, Sharma P, Snoeys J, Shebley M, et al. 2021. Physiologically-based pharmacokinetic modeling in renal and hepatic impairment populations: a pharmaceutical industry perspective. Clin Pharmacol Ther. 110(2):297–310. doi: 10.1002/cpt.2125.
  • Hsu CY, Chertow GM, Curhan GC. 2002. Methodological issues in studying the epidemiology of mild to moderate chronic renal insufficiency. Kidney Int. 61(5):1567–1576. doi: 10.1046/j.1523-1755.2002.00299.x.
  • Johnson TN, Boussery K, Rowland-Yeo K, Tucker GT, Rostami-Hodjegan A. 2010. A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet. 49(3):189–206.
  • Koelblinger P, Thuerigen O, Dummer R. 2018. Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol. 30(2):125–133. doi: 10.1097/CCO.0000000000000426.
  • Kollipara S, Ahmed T, Sivadasu P. 2023a. Physiologically based pharmacokinetic modeling to predict drug-drug interactions for encorafenib. Part I. Model Building, Validation and Prospective Predictions with Enzyme Inhibitors, Inducers and Transporter Inhibitors. Xenobiotica. Accepted Manuscript. doi: 10.1080/00498254.2023.2250856
  • Kollipara S, Bhattiprolu AK, Boddu R, Ahmed T, Chachad S. 2023b. Best practices for integration of dissolution data into physiologically based biopharmaceutics models (PBBM): a biopharmaceutics modeling scientist perspective. AAPS Pharm Sci Tech. 24(2):59. doi: 10.1208/s12249-023-02521-y.
  • Krens SD, Lassche G, Jansman FGA, Desar IME, Lankheet NAG, Burger DM, Van Herpen CML, Van Erp NP. 2019. Dose recommendations for anticancer drugs in patients with renal or hepatic impairment. The Lancet Oncol. 20(4):e200–e207. doi: 10.1016/S1470-2045(19)30145-7.
  • Liu L, Bello A, Dresser MJ, Heald D, Komjathy SF, O'Mara E, Rogge M, Stoch SA, Robertson SM. 2016. Best practices for the use of itraconazole as a replacement for ketoconazole in drug–drug interaction studies. J Clin Pharmacol. 56(2):143–151. doi: 10.1002/jcph.562.
  • Lukacova V, Parrott NJ, Lave T, Franczkiewicz G, Bolger MB, Woltosz WS. 2008. General approach to calculation of tissue: plasma partition coefficients for physiologically based pharmacokinetic (PBPK) modeling. [accessed 2023 Jun 15]. https://www.simulations-plus.com/wp-content/uploads/Lukacova-General_Approach_Calc_Tissue_Plasma_Partition_Coefficients_PBPK_Modeling-AAPS-2008-1.pdf.
  • Maharaj AR, Barrett JS, Edginton AN. 2013. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. Aaps J. 15(2):455–464. doi: 10.1208/s12248-013-9451-0.
  • Marques L, Vale N. 2023. Prediction of CYP-mediated drug interaction using physiologically based pharmacokinetic modeling: a case study of salbutamol and fluvoxamine. Pharmaceutics. 15(6):1586. doi: 10.3390/pharmaceutics15061586.
  • Marsousi N, Desmeules JA, Rudaz S, Daali Y. 2017. Usefulness of PBPK modeling in incorporation of clinical conditions in personalized medicine. J Pharm Sci. 106(9):2380–2391. doi: 10.1016/j.xphs.2017.04.035.
  • Naga D, Parrott N, Ecker GF, Olivares-Morales A. 2022. Evaluation of the success of high-throughput physiologically based pharmacokinetic (HT-PBPK) modeling predictions to inform early drug discovery. Mol Pharm. 19(7):2203–2216. doi: 10.1021/acs.molpharmaceut.2c00040.
  • Palatini P, Martin SD. 2016. Pharmacokinetic drug interactions in liver disease: an update. World J Gastroenterol. 22(3):1260–1278. doi: 10.3748/wjg.v22.i3.1260.
  • Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll K. 2004. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 199(3):193–209. doi: 10.1016/j.taap.2004.01.010.
  • Piscitelli J, Hens B, Tomaszewska I, Wollenberg L, Litwiler K, McAllister M, Reddy M. 2023. Effect of food and a proton-pump inhibitor on the absorption of encorafenib: an in vivo–in vitro–in silico approach. Mol Pharm. 20(5):2589–2599. doi: 10.1021/acs.molpharmaceut.3c00016.
  • Poulin P, Haddad S. 2011. Microsome composition-based model as a mechanistic tool to predict nonspecific binding of drugs in liver microsomes. J Pharm Sci. 100(10):4501–4517. doi: 10.1002/jps.22619.
  • Ren HC, Sai Y, Chen T, Zhang C, Tang L, Yang CG. 2022. Predicting the drug-drug interaction mediated by CYP3A4 inhibition: method development and performance evaluation. Aaps J. 24(1):12. doi: 10.1208/s12248-021-00659-w.
  • Rodgers T, Rowland M. 2006. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 95(6):1238–1257. doi: 10.1002/jps.20502.
  • USFDA. 2003. Pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labeling. [accessed 2023 Jun 15]. https://www.fda.gov/media/71311/download.
  • USFDA. 2018a. Encorafenib multi-disciplinary review. [accessed 2023 Jun 15]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210496Orig1s000MultidisciplineR.pdf.
  • USFDA. 2018b. Encorafenib label. [accessed 2023 Jun 15]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/210496s006lbl.pdf.
  • USFDA. 2020a. The use of physiologically based pharmacokinetic analyses-biopharmaceutics applications for oral drug product development, manufacturing changes, and controls guidance for industry. [accessed 2023 Jun 15]. https://www.fda.gov/media/142500/download.
  • USFDA. 2020b. Clinical drug interaction studies-cytochrome P450 enzyme- and transporter-mediated drug interactions. [accessed 2023 Jun 15]. https://www.fda.gov/media/134581/download.
  • USFDA. 2020c. Guidance for industry pharmacokinetics in patients with impaired renal function-study design, data analysis, and impact on dosing. [accessed 2023 Jun 15]. https://www.fda.gov/media/78573/download.
  • USFDA. 2023. Drug development and drug interactions | table of substrates, inhibitors and inducers. [accessed 2023 Jun 15]. https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers.
  • Watanabe A, Ishizuka T, Yamada M, Igawa Y, Shimizu T, Ishizuka H. 2022. Physiologically based pharmacokinetic modelling to predict the clinical effect of CYP3A inhibitors/inducers on esaxerenone pharmacokinetics in healthy subjects and subjects with hepatic impairment. Eur J Clin Pharmacol. 78(1):65–73. doi: 10.1007/s00228-021-03194-x.
  • Wen HN, He QF, Xiang XQ, Jiao Z, Yu JG. 2022. Predicting drug-drug interactions with physiologically based pharmacokinetic/pharmacodynamic modelling and optimal dosing of apixaban and rivaroxaban with dronedarone co-administration. Thromb Res. 218:24–34. doi: 10.1016/j.thromres.2022.08.007.
  • Wu W, Lin R, Ke M, Ye L, Lin C. 2023. Physiologically based pharmacokinetic modeling characterizes the drug-drug interaction between saxagliptin and rifampicin in patients with renal impairment. J Clin Pharmacol. 63(7):848–858. doi: 10.1002/jcph.2223.
  • Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. 2023. Physiologically based pharmacokinetics modeling in biopharmaceutics: case studies for establishing the bioequivalence safe space for innovator and generic drugs. Pharm Res. 40(2):337–357. doi: 10.1007/s11095-022-03319-6.
  • Xu R, Tang H, Chen L, Ge W, Yang J. 2021. Developing a physiologically based pharmacokinetic model of apixaban to predict scenarios of drug-drug interactions, renal impairment and paediatric populations. Br J Clin Pharmacol. 87(8):3244–3254. doi: 10.1111/bcp.14743.
  • Yau E, Gertz M, Ogungbenro K, Aarons L, Olivares-Morales A. 2023. A “middle-out approach” for the prediction of human drug disposition from preclinical data using simplified physiologically based pharmacokinetic (PBPK) models. CPT Pharmacometrics Syst Pharmacol. 12(3):346–359. doi: 10.1002/psp4.12915.
  • Yeo KR, Walsky RL, Jamei M, Rostami-Hodjegan A, Tucker GT. 2011. Prediction of time-dependent CYP3A4 drug-drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. Eur J Pharm Sci. 43(3):160–173. doi: 10.1016/j.ejps.2011.04.008.
  • Zhao P, Lee CA, Kunze KL. 2007. Sequential metabolism is responsible for diltiazem-induced time-dependent loss of CYP3A. Drug Metab Dispos. 35(5):704–712. doi: 10.1124/dmd.106.013847.
  • Zhuang X, Lu C. 2016. PBPK modeling and simulation in drug research and development. Acta Pharm Sin B. 6(5):430–440. doi: 10.1016/j.apsb.2016.04.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.