Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 53, 2023 - Issue 8-9
100
Views
0
CrossRef citations to date
0
Altmetric
Xenobiotic transporters

Hyperoside ameliorates cisplatin-induced acute kidney injury by regulating the expression and function of Oat1

, , , , , , , , & ORCID Icon show all
Pages 559-571 | Received 08 Aug 2023, Accepted 09 Oct 2023, Published online: 27 Oct 2023

References

  • An X, Zhang L, Yuan Y, Wang B, Yao Q, Li L, Zhang J, He M, Zhang J. 2017. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Sci Rep. 7(1):6413. doi: 10.1038/s41598-017-06844-2.
  • Assefa EG, Yan Q, Gezahegn SB, Salissou MTM, He S, Wu N, Zuo X, Ying C. 2019. Role of resveratrol on indoxyl sulfate-induced endothelial hyperpermeability via aryl hydrocarbon receptor (AHR)/Src-dependent pathway. Oxid Med Cell Longev. 2019:5847040–15. doi: 10.1155/2019/5847040.
  • Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK, Clark A, Pascual J, Ley RE, Spector TD, Bell JT, et al. 2015. Gut-microbiota-metabolite axis in early renal function decline. PLoS One. 10(8):e0134311. doi: 10.1371/journal.pone.0134311.
  • Bush KT, Singh P, Nigam SK. 2020. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight. 5(7):e133817. doi: 10.1172/jci.insight.133817.
  • Chen Z, An X, Liu X, Qi J, Ding D, Zhao M, Duan S, Huang Z, Zhang C, Wu L, et al. 2017. Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission. Oncotarget. 8(51):88792–88803. doi: 10.18632/oncotarget.21287.
  • Chunzhi G, Zunfeng L, Chengwei Q, Xiangmei B, Jingui Y. 2016. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways. Oncotarget. 7(50):82602–82608. doi: 10.18632/oncotarget.13010.
  • Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI. 2017. A systematic review of strategies to prevent cisplatin‐induced nephrotoxicity. Oncologist. 22(5):609–619. doi: 10.1634/theoncologist.2016-0319.
  • Donnapee S, Li J, Yang X, Ge A, Donkor PO, Gao X, Chang Y. 2014. Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J Ethnopharmacol. 157:292–308. doi: 10.1016/j.jep.2014.09.032.
  • Erman F, Tuzcu M, Orhan C, Sahin N, Sahin K. 2014. Effect of lycopene against cisplatin-induced acute renal injury in rats: organic anion and cation transporters evaluation. Biol Trace Elem Res. 158(1):90–95. doi: 10.1007/s12011-014-9914-x.
  • Fan X, Wei W, Huang J, Peng L, Ci X. 2020. Daphnetin attenuated cisplatin-induced acute nephrotoxicity with enhancing antitumor activity of cisplatin by upregulating SIRT1/SIRT6-Nrf2 Pathway. Front Pharmacol. 11:579178. doi: 10.3389/fphar.2020.579178.
  • Fu T, Wang L, Jin X, Sui H, Liu Z, Jin Y. 2016. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol Sin. 37(4):505–518. doi: 10.1038/aps.2015.148.
  • Hoyer FF, Nahrendorf M. 2019. Uremic toxins activate macrophages. Circulation. 139(1):97–100. doi: 10.1161/CIRCULATIONAHA.118.037308.
  • Huang D, Wang C, Duan Y, Meng Q, Liu Z, Huo X, Sun H, Ma X, Liu K. 2017. Targeting Oct2 and P53: formononetin prevents cisplatin-induced acute kidney injury. Toxicol Appl Pharmacol. 326:15–24. doi: 10.1016/j.taap.2017.04.013.
  • Huang J, Bao D, Lei C-T, Tang H, Zhang C-Y, Su H, Zhang C. 2020. Selenoprotein T protects against cisplatin-induced acute kidney injury through suppression of oxidative stress and apoptosis. Faseb J. 34(9):11983–11996. doi: 10.1096/fj.202000180RR.
  • Huang Z, Li Q, Yuan Y, Zhang C, Wu L, Liu X, Cao W, Guo H, Duan S, Xu X, et al. 2019. Renalase attenuates mitochondrial fission in cisplatin-induced acute kidney injury via modulating sirtuin-3. Life Sci. 222:78–87. doi: 10.1016/j.lfs.2019.02.042.
  • Ibrahim A, Al-Hizab FA, Abushouk AI, Abdel-Daim MM. 2018. Nephroprotective effects of benzyl isothiocyanate and resveratrol against cisplatin-induced oxidative stress and inflammation. Front Pharmacol. 9:1268. doi: 10.3389/fphar.2018.01268.
  • Jansen J, Jansen K, Neven E, Poesen R, Othman A, van Mil A, Sluijter J, Sastre Torano J, Zaal EA, Berkers CR, et al. 2019. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. Proc Natl Acad Sci USA. 116(32):16105–16110. doi: 10.1073/pnas.1821809116.
  • Jin L, Kikuchi R, Saji T, Kusuhara H, Sugiyama Y. 2012. Regulation of tissue-specific expression of renal organic anion transporters by hepatocyte nuclear factor 1 α/β and DNA methylation. J Pharmacol Exp Ther. 340(3):648–655. doi: 10.1124/jpet.111.187161.
  • Jing T, Liao J, Shen K, Chen X, Xu Z, Tian W, Wang Y, Jin B, Pan H. 2019. Protective effect of urolithin A on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food Chem Toxicol. 129:108–114. doi: 10.1016/j.fct.2019.04.031.
  • Kikuchi R, Kusuhara H, Hattori N, Shiota K, Kim I, Gonzalez FJ, Sugiyama Y. 2006. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1alpha/beta and DNA methylation. Mol Pharmacol. 70(3):887–896. doi: 10.1124/mol.106.025494.
  • Landau SI, Guo X, Velazquez H, Torres R, Olson E, Garcia-Milian R, Moeckel GW, Desir GV, Safirstein R. 2019. Regulated necrosis and failed repair in cisplatin-induced chronic kidney disease. Kidney Int. 95(4):797–814. doi: 10.1016/j.kint.2018.11.042.
  • Lano G, Burtey S, Sallée M. 2020. Indoxyl sulfate, a uremic endotheliotoxin. Toxins (Basel). 12(4):229. doi: 10.3390/toxins12040229.
  • Lee T-H, Park D, Kim YJ, Lee I, Kim S, Oh C-T, Kim J-Y, Yang J, Jo S-K. 2020. Lactobacillus salivarius BP121 prevents cisplatin‑induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p‑cresol sulfate via alleviating dysbiosis. Int J Mol Med. 45(4):1130–1140. doi: 10.3892/ijmm.2020.4495.
  • Li Z, Liao W, Yin X, Liu L, Zhao Z, Lu X, Xu F, Lin X, Chen Y, Song J, et al. 2023. Hyperoside attenuates Cd-induced kidney injury via inhibiting NLRP3 inflammasome activation and ROS/MAPK/NF-κB signaling pathway in vivo and in vitro. Food Chem Toxicol. 172:113601. doi: 10.1016/j.fct.2023.113601.
  • Liu B, Tu Y, He W, Liu Y, Wu W, Fang Q, Tang H, Tang R, Wan Z, Sun W, et al. 2018. Hyperoside attenuates renal aging and injury induced by D-galactose via inhibiting AMPK-ULK1 signaling-mediated autophagy. Aging (Albany NY)). 10(12):4197–4212. doi: 10.18632/aging.101723.
  • Liu J-R, Miao H, Deng D-Q, Vaziri ND, Li P, Zhao Y-Y. 2021. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation. Cell Mol Life Sci. 78(3):909–922. doi: 10.1007/s00018-020-03645-1.
  • Liu Q, Liu Z, Huo X, Wang C, Meng Q, Sun H, Sun P, Peng J, Ma X, Liu K. 2018. Puerarin improves methotrexate-induced renal damage by up-regulating renal expression of Oat1 and Oat3 in vivo and in vitro. Biomed Pharmacother. 103:915–922. doi: 10.1016/j.biopha.2018.04.122.
  • Liu T, Meng Q, Wang C, Liu Q, Guo X, Sun H, Peng J, Ma X, Kaku T, Liu K. 2012. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats. Toxicol Appl Pharmacol. 264(3):423–430. doi: 10.1016/j.taap.2012.08.019.
  • Liu W-C, Tomino Y, Lu K-C. 2018. Impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of AST-120. Toxins (Basel). 10(9):367. doi: 10.3390/toxins10090367.
  • Lombardo L, Pellitteri R, Balazy M, Cardile V. 2008. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res. 5(2):82–92. doi: 10.2174/156720208784310196.
  • Menez S, Hanouneh M, Shafi T, Jaar BG. 2019. Indoxyl sulfate is associated with mortality after AKI – more evidence needed. BMC Nephrol. 20(1):280. doi: 10.1186/s12882-019-1465-0.
  • Mo Y, Lu Z, Wang L, Ji C, Zou C, Liu X. 2020. The aryl hydrocarbon receptor in chronic kidney disease: friend or foe? Front Cell Dev Biol. 8:589752. doi: 10.3389/fcell.2020.589752.
  • Nieskens TTG, Peters JGP, Dabaghie D, Korte D, Jansen K, Van Asbeck AH, Tavraz NN, Friedrich T, Russel FGM, Masereeuw R, et al. 2018. Expression of organic anion transporter 1 or 3 in human kidney proximal tubule cells reduces cisplatin sensitivity. Drug Metab Dispos. 46(5):592–599. doi: 10.1124/dmd.117.079384.
  • Nigam SK, Bush KT. 2019. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol. 15(5):301–316. doi: 10.1038/s41581-019-0111-1.
  • Nigam SK, Bush KT, Martovetsky G, Ahn S-Y, Liu HC, Richard E, Bhatnagar V, Wu W. 2015. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 95(1):83–123. doi: 10.1152/physrev.00025.2013.
  • Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V. 2015. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol. 10(11):2039–2049. doi: 10.2215/CJN.02440314.
  • Ogasawara K, Terada T, Asaka J, Katsura T, Inui K. 2007. Hepatocyte nuclear factor-4α regulates the human organic anion transporter 1 gene in the kidney. Am J Physiol Renal Physiol. 292(6):F1819–F1826. doi: 10.1152/ajprenal.00017.2007.
  • Opdebeeck B, D'Haese PC, Verhulst A. 2020. Molecular and cellular mechanisms that induce arterial calcification by indoxyl sulfate and p-cresyl sulfate. Toxins (Basel). 12(1):58. doi: 10.3390/toxins12010058.
  • Potočnjak I, Domitrović R. 2016. Carvacrol attenuates acute kidney injury induced by cisplatin through suppression of ERK and PI3K/Akt activation. Food Chem Toxicol. 98(Pt B):251–261. doi: 10.1016/j.fct.2016.11.004.
  • Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. 2019. Advances in toxicological research of the anticancer drug cisplatin. Chem Res Toxicol. 32(8):1469–1486. doi: 10.1021/acs.chemrestox.9b00204.
  • Saddiqe Z, Naeem I, Maimoona A. 2010. A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol. 131(3):511–521. doi: 10.1016/j.jep.2010.07.034.
  • Saito H. 2010. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol Ther. 125(1):79–91. doi: 10.1016/j.pharmthera.2009.09.008.
  • Saji T, Kikuchi R, Kusuhara H, Kim I, Gonzalez FJ, Sugiyama Y. 2008. Transcriptional regulation of human and mouse organic anion transporter 1 by hepatocyte nuclear factor 1 α/β. J Pharmacol Exp Ther. 324(2):784–790. doi: 10.1124/jpet.107.128249.
  • Shen Q, Wang J, Yuan Z, Jiang Z, Shu T, Xu D, He J, Zhang L, Huang X. 2019. Key role of organic cation transporter 2 for the nephrotoxicity effect of triptolide in rheumatoid arthritis. Int Immunopharmacol. 77:105959. doi: 10.1016/j.intimp.2019.105959.
  • Shibayama Y, Ushinohama K, Ikeda R, Yoshikawa Y, Motoya T, Takeda Y, Yamada K. 2006. Effect of methotrexate treatment on expression levels of multidrug resistance protein 2, breast cancer resistance protein and organic anion transporters Oat1, Oat2 and Oat3 in rats. Cancer Sci. 97(11):1260–1266. doi: 10.1111/j.1349-7006.2006.00304.x.
  • Shin YJ, Kim TH, Won AJ, Jung JY, Kwack SJ, Kacew S, Chung KH, Lee BM, Kim HS. 2014. Age-related differences in kidney injury biomarkers induced by cisplatin. Environ Toxicol Pharmacol. 37(3):1028–1039. doi: 10.1016/j.etap.2014.03.014.
  • Tan R-Z, Liu J, Zhang Y-Y, Wang H-L, Li J-C, Liu Y-H, Zhong X, Zhang Y-W, Yan Y, Lan H-Y, et al. 2019. Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine. 52:284–294. doi: 10.1016/j.phymed.2018.09.210.
  • Tan R-Z, Wang C, Deng C, Zhong X, Yan Y, Luo Y, Lan H-Y, He T, Wang L. 2020. Quercetin protects against cisplatin-induced acute kidney injury by inhibiting Mincle/Syk/NF-κB signaling maintained macrophage inflammation. Phytother Res. 34(1):139–152. doi: 10.1002/ptr.6507.
  • Tang J, Shi Y, Liu N, Xu L, Zang X, Li P, Zhang J, Zheng X, Qiu A, Zhuang S. 2018. Blockade of histone deacetylase 6 protects against cisplatin-induced acute kidney injury. Clin Sci (Lond). 132(3):339–359. doi: 10.1042/CS20171417.
  • Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, Arsenijevic N. 2019. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 26(1):25. doi: 10.1186/s12929-019-0518-9.
  • Wang M, Yang J, Wang C. 2020. Shen Shuai II recipe attenuates apoptosis in 5/6 renal ablation/infarction rats by inhibiting p53 and the mitochondrial pathway of apoptosis. Oxid Med Cell Longev. 2020:7083575. doi: 10.1155/2020/7083575.
  • Wu I-W, Lin C-Y, Chang L-C, Lee C-C, Chiu C-Y, Hsu H-J, Sun C-Y, Chen Y-C, Kuo Y-L, Yang C-W, et al. 2020. Gut microbiota as diagnostic tools for mirroring disease progression and circulating nephrotoxin levels in chronic kidney disease: discovery and validation study. Int J Biol Sci. 16(3):420–434. doi: 10.7150/ijbs.37421.
  • Wu L, Li Q, Liu S, An X, Huang Z, Zhang B, Yuan Y, Xing C. 2019. Protective effect of hyperoside against renal ischemia-reperfusion injury via modulating mitochondrial fission, oxidative stress, and apoptosis. Free Radic Res. 53(7):727–736. doi: 10.1080/10715762.2019.1623883.
  • Xing J-J, Hou J-G, Ma Z-N, Wang Z, Ren S, Wang Y-P, Liu W-C, Chen C, Li W. 2019. Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo. Cell Prolif. 52(4):e12627. doi: 10.1111/cpr.12627.
  • Yang Z, Tang H, Shao Q, Bilia AR, Wang Y, Zhao X. 2018. Enrichment and purification of the bioactive flavonoids from flower of Abelmoschus manihot (L.) medic using macroporous resins. Molecules. 23(10):2649. doi: 10.3390/molecules23102649.
  • Yuan W, Wang J, An X, Dai M, Jiang Z, Zhang L, Yu S, Huang X. 2021. UPLC-MS/MS method for the determination of hyperoside and application to pharmacokinetics study in rat after different administration routes. Chromatographia. 84(3):249–256. doi: 10.1007/s10337-020-04002-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.