Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 53, 2023 - Issue 10-11
97
Views
1
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Tree shrew cytochrome P450 2E1 is a functional enzyme that metabolises chlorzoxazone and p-nitrophenol

, , , ORCID Icon & ORCID Icon
Pages 573-580 | Received 14 Oct 2023, Accepted 05 Nov 2023, Published online: 15 Nov 2023

References

  • Bièche I, Narjoz C, Asselah T, Vacher S, Marcellin P, Lidereau R, Beaune P, de Waziers I. 2007. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics. 17(9):731–742. doi: 10.1097/FPC.0b013e32810f2e58.
  • Bogaards JJ, Bertrand M, Jackson P, Oudshoorn MJ, Weaver RJ, van Bladeren PJ, Walther B. 2000. Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica. 30(12):1131–1152. doi: 10.1080/00498250010021684.
  • Cao J, Yang EB, Su JJ, Li Y, Chow P. 2003. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol. 32(3):123–130. doi: 10.1034/j.1600-0684.2003.00022.x.
  • Chen J, Jiang S, Wang J, Renukuntla J, Sirimulla S, Chen J. 2019. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab Rev. 51(2):178–195. doi: 10.1080/03602532.2019.1632889.
  • Couto N, Al-Majdoub ZM, Achour B, Wright PC, Rostami-Hodjegan A, Barber J. 2019. Quantification of proteins involved in drug metabolism and disposition in the human liver using label-free global proteomics. Mol Pharm. 16(2):632–647. doi: 10.1021/acs.molpharmaceut.8b00941.
  • Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, et al. 2013. Genome of the Chinese tree shrew. Nat Commun. 4:1426. doi: 10.1038/ncomms2416.
  • Gotoh O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem. 267(1):83–90. doi: 10.1016/S0021-9258(18)48462-1.
  • Hanioka N, Yamamoto M, Iwabu H, Jinno H, Tanaka-Kagawa T, Naito S, Shimizu T, Masuda K, Katsu T, Narimatsu S. 2007. Functional characterization of human and cynomolgus monkey cytochrome P450 2E1 enzymes. Life Sci. 81(19–20):1436–1445. doi: 10.1016/j.lfs.2007.09.002.
  • Heikkinen AT, Friedlein A, Matondo M, Hatley OJ, Petsalo A, Juvonen R, Galetin A, Rostami-Hodjegan A, Aebersold R, Lamerz J, et al. 2015. Quantitative ADME proteomics – CYP and UGT enzymes in the beagle dog liver and intestine. Pharm Res. 32(1):74–90. doi: 10.1007/s11095-014-1446-8.
  • Hu Y, Oscarson M, Johansson I, Yue QY, Dahl ML, Tabone M, Arincò S, Albano E, Ingelman-Sundberg M. 1997. Genetic polymorphism of human CYP2E1: characterization of two variant alleles. Mol Pharmacol. 51(3):370–376.
  • Ingelman-Sundberg M, Johansson I, Yin H, Terelius Y, Eliasson E, Clot P, Albano E. 1993. Ethanol-inducible cytochrome P4502E1: genetic polymorphism, regulation, and possible role in the etiology of alcohol-induced liver disease. Alcohol. 10(6):447–452. doi: 10.1016/0741-8329(93)90063-t.
  • Iwata H, Fujita K, Kushida H, Suzuki A, Konno Y, Nakamura K, Fujino A, Kamataki T. 1998. High catalytic activity of human cytochrome P450 co-expressed with human NADPH-cytochrome P450 reductase in Escherichia coli. Biochem Pharmacol. 55(8):1315–1325. doi: 10.1016/s0006-2952(97)00643-6.
  • Jayyosi Z, Knoble D, Muc M, Erick J, Thomas PE, Kelley M. 1995. Cytochrome P-450 2E1 is not the sole catalyst of chlorzoxazone hydroxylation in rat liver microsomes. J Pharmacol Exp Ther. 273(3):1156–1161. PMID: 7791086
  • Lankford SM, Bai SA, Goldstein JA. 2000. Cloning of canine cytochrome P450 2E1 cDNA: identification and characterization of two variant alleles. Drug Metab Dispos. 28(8):981–986.
  • Lieber CS. 1997. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev. 77(2):517–544. doi: 10.1152/physrev.1997.77.2.517.
  • Lin Z, Lou Y, Squires EJ. 2006. Functional polymorphism in porcine CYP2E1 gene: its association with skatole levels. J Steroid Biochem Mol Biol. 99(4-5):231–237. doi: 10.1016/j.jsbmb.2005.07.001.
  • Martinez SE, Shi J, Zhu HJ, Perez Jimenez TE, Zhu Z, Court MH. 2019. Absolute quantitation of drug-metabolizing cytochrome P450 enzymes and accessory proteins in dog liver microsomes using label-free standard-free analysis reveals interbreed variability. Drug Metab Dispos. 47(11):1314–1324. doi: 10.1124/dmd.119.088070.
  • Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. 2004. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics. 14(1):1–18. doi: 10.1097/00008571-200401000-00001.
  • Rasmussen MK, Scavenius C, Gerbal-Chaloin S, Enghild J. 2019. Sex dictates the constitutive expression of hepatic cytochrome P450 isoforms in Gottingen minipigs. Toxicol Lett. 314:181–186. doi: 10.1016/j.toxlet.2019.08.008.
  • Rendic S, Guengerich FP. 2010. Update information on drug metabolism systems–2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab. 11 (1):4–84. doi: 10.2174/138920010791110917.
  • Schelstraete W, Clerck L, Govaert E, Millecam J, Devreese M, Deforce D, Bocxlaer JV, Croubels S. 2019. Characterization of porcine hepatic and intestinal drug metabolizing CYP450: comparison with human orthologues from a quantitative, activity and selectivity perspective. Sci Rep. 9(1):9233. doi: 10.1038/s41598-019-45212-0.
  • Skaanild MT, Friis C. 2007. Is bupropion a more specific substrate for porcine CYP2E than chlorzoxazone and p-nitrophenol? Basic Clin Pharmacol Toxicol. 101(3):159–162. doi: 10.1111/j.1742-7843.2007.00083.x.
  • Tsukiyama-Kohara K, Kohara M. 2014. Tupaia belangeri as an experimental animal model for viral infection. Exp Anim. 63(4):367–374. doi: 10.1538/expanim.63.367.
  • Uehara S, Uno Y, Tomioka E, Inoue T, Sasaki E, Yamazaki H. 2017. Functional characterization and tissue expression of marmoset cytochrome P450 2E1. Biopharm Drug Dispos. 38(6):394–397. doi: 10.1002/bdd.2080.
  • Uno Y, Fujino H, Kito G, Kamataki T, Nagata R. 2006. CYP2C76, a novel cytochrome P450 in cynomolgus monkey, is a major CYP2C in liver, metabolizing tolbutamide and testosterone. Mol Pharmacol. 70(2):477–486. doi: 10.1124/mol.106.022673.
  • Uno Y, Jikuya S, Noda Y, Oguchi A, Murayama N, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. 2023. Newly identified cytochrome P450 3A genes of tree shrews and pigs are expressed and encode functional enzymes. Comp Biochem Physiol C Toxicol Pharmacol. 267:109579. doi: 10.1016/j.cbpc.2023.109579.
  • Uno Y, Noda Y, Murayama N, Tsukiyama-Kohara K, Yamazaki H. 2023. Novel cytochrome P450 1 (CYP1) genes in tree shrews are expressed and encode functional drug-metabolizing enzymes. Comp Biochem Physiol C Toxicol Pharmacol. 265:109534. doi: 10.1016/j.cbpc.2022.109534.
  • Uno Y, Shimizu M, Ogawa Y, Makiguchi M, Kawaguchi H, Yamato O, Ishizuka M, Yamazaki H. 2022. Molecular and functional characterization of flavin-containing monooxygenases in pigs, dogs, and cats. Biochem Pharmacol. 202:115125. doi: 10.1016/j.bcp.2022.115125.
  • Uno Y, Ushirozako G, Uehara S, Murayama N, Fujiki Y, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. 2022. Newly identified tree shrew cytochrome P450 2B6 (CYP2B6) and pig CYP2B6b are functional drug-metabolising enzymes. Xenobiotica. 52(7):687–696. doi: 10.1080/00498254.2022.2141153.
  • Uno Y, Morikuni S, Murayama N, Yamazaki H. 2023. 2-Oxidation, 3-methyl hydroxylation, and 6-hydroxylation of skatole, a contributor to the odour of boar-tainted pork meat, mediated by porcine liver microsomal cytochromes P450 1A2, 2A19, 2E1, and 3A22. Xenobiotica. 53(1):60–65. doi: 10.1080/00498254.2023.2197037.
  • Ushirozako G, Noda Y, Murayama N, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H, Uno Y. 2023. Newly identified tree shrew cytochrome P450 2A13 is expressed in liver and lung and encodes a functional drug-metabolizing enzyme similar to dog cytochrome P450 2A13 and pig cytochrome P450 2A19. Drug Metab Dispos. 51(5):610–617. doi: 10.1124/dmd.122.001152.
  • Yamazaki H, Guo Z, Guengerich FP. 1995. Selectivity of cytochrome P4502E1 in chlorzoxazone 6-hydroxylation. Drug Metab Dispos. 23(3):438–440.
  • Yamazaki H, Nakamura M, Komatsu T, Ohyama K, Hatanaka N, Asahi S, Shimada N, Guengerich FP, Shimada T, Nakajima M, et al. 2002. Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr Purif. 24(3):329–337. doi: 10.1006/prep.2001.1578.
  • Zanger UM, Schwab M. 2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 138(1):103–141. doi: 10.1016/j.pharmthera.2012.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.