Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 53, 2023 - Issue 10-11
79
Views
0
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Chronic Toxoplasma infection affects gene expression of drug-metabolizing enzymes in mouse liver

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 581-586 | Received 26 Oct 2023, Accepted 19 Nov 2023, Published online: 26 Nov 2023

References

  • Aitken AE, Morgan ET. 2007. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos. 35(9):1687–1693. doi: 10.1124/dmd.107.015511.
  • Aitken AE, Richardson TA, Morgan ET. 2006. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 46:123–149. doi: 10.1146/annurev.pharmtox.46.120604.141059.
  • Azam YJ, Machavaram KK, Rostami-Hodjegan A. 2014. The modulating effects of endogenous substances on drug metabolising enzymes and implications for inter-individual variability and quantitative prediction. Curr Drug Metab. 15(6):599–619. doi: 10.2174/1389200215666140926151642.
  • Berg-Candolfi M, Candolfi E. 1996. Depression of the N-demethylation of erythromycin, azithromycin, clarithromycin and clindamycin in murine Toxoplasma infection. Int J Parasitol. 26(11):1321–1323. doi: 10.1016/s0020-7519(96)00111-7.
  • Berg-Candolfi M, Candolfi E, Benet LZ. 1996. Suppression of intestinal and hepatic cytochrome P4503A in murine Toxoplasma infection. Effects of N-acetylcysteine and NG-monomethyl-L-arginine on the hepatic suppression. Xenobiotica. 26(4):381–394. doi: 10.3109/00498259609046717.
  • Garfoot AL, Wilson GM, Coon JJ, Knoll LJ. 2019. Proteomic and transcriptomic analyses of early and late-chronic Toxoplasma gondii infection shows novel and stage specific transcripts. BMC Genomics. 20(1):859. doi: 10.1186/s12864-019-6213-0.
  • He JJ, Ma J, Elsheikha HM, Song HQ, Huang SY, Zhu XQ. 2016. Transcriptomic analysis of mouse liver reveals a potential hepato-enteric pathogenic mechanism in acute Toxoplasma gondii infection. Parasit Vectors. 9(1):427.
  • He JJ, Ma J, Wang JL, Zhang FK, Li JX, Zhai BT, Wang ZX, Elsheikha HM, Zhu XQ. 2019. Global transcriptome profiling of multiple porcine organs reveals Toxoplasma gondii-induced transcriptional landscapes. Front Immunol. 10:1531. doi: 10.3389/fimmu.2019.01531.
  • Hrycay EG, Bandiera SM. 2009. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes. Curr Drug Metab. 10(10):1151–1183. doi: 10.2174/138920009790820138.
  • Hu RS, He JJ, Elsheikha HM, Zou Y, Ehsan M, Ma QN, Zhu XQ, Cong W. 2020. Transcriptomic profiling of mouse brain during acute and chronic infections by Toxoplasma gondii oocysts. Front Microbiol. 11:570903. doi: 10.3389/fmicb.2020.570903.
  • Kandel SE, Han LW, Mao Q, Lampe JN. 2017. Digging deeper into CYP3A testosterone metabolism: kinetic, regioselectivity, and stereoselectivity differences between CYP3A4/5 and CYP3A7. Drug Metab Dispos. 45(12):1266–1275. doi: 10.1124/dmd.117.078055.
  • Klaassen CD, Slitt AL. 2005. Regulation of hepatic transporters by xenobiotic receptors. Curr Drug Metab. 6(4):309–328. doi: 10.2174/1389200054633826.
  • Konstantinovic N, Guegan H, Stäjner T, Belaz S, Robert-Gangneux F. 2019. Treatment of toxoplasmosis: current options and future perspectives. Food Waterborne Parasitol. 15:e00036. doi: 10.1016/j.fawpar.2019.e00036.
  • Löfgren S, Hagbjörk AL, Ekman S, Fransson-Steen R, Terelius Y. 2004. Metabolism of human cytochrome P450 marker substrates in mouse: a strain and gender comparison. Xenobiotica. 34(9):811–834. doi: 10.1080/00498250412331285463.
  • Masatani T, Oyamada S, Inoue R, Tsujio M, Hatai H, Matsui T, Matsuo T. 2020. In vivo characterization of a Toxoplasma gondii strain TgCatJpTy1/k-3 isolated from a stray cat in Japan. Parasitol Int. 74:101995. doi: 10.1016/j.parint.2019.101995.
  • Montoya JG, Liesenfeld O. 2004. Toxoplasmosis. Lancet. 363(9425):1965–1976. doi: 10.1016/S0140-6736(04)16412-X.
  • Morgan ET. 2009. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 85(4):434–438. doi: 10.1038/clpt.2008.302.
  • Nakanishi K, Uehara S, Kusama T, Inoue T, Shimura K, Kamiya Y, Murayama N, Shimizu M, Uno Y, Sasaki E, et al. 2018. In vivo and in vitro diclofenac 5-hydroxylation mediated primarily by cytochrome P450 3A enzymes in common marmoset livers genotyped for P450 2C19 variants. Biochem Pharmacol. 152(6):272–278. doi: 10.1016/j.bcp.2018.04.002.
  • Pittman KJ, Aliota MT, Knoll LJ. 2014. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics. 15(1):806. doi: 10.1186/1471-2164-15-806.
  • Rendic S. 2002. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 34:83–448. doi: 10.1081/dmr-120001392.
  • Robert-Gangneux F, Darde ML. 2012. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 25(2):264–296. doi: 10.1128/CMR.05013-11.
  • Shah RR, Smith RL. 2015. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos. 43(3):400–410. doi: 10.1124/dmd.114.061093.
  • Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R, French Society of P, Therapeutics. 2020. Inflammation is a major regulator of drug metabolizing enzymes and transporters: consequences for the personalization of drug treatment. Pharmacol Ther. 215:107627. doi: 10.1016/j.pharmthera.2020.107627.
  • Tanaka S, Nishimura M, Ihara F, Yamagishi J, Suzuki Y, Nishikawa Y. 2013. Transcriptome analysis of mouse brain infected with Toxoplasma gondii. Infect Immun. 81(10):3609–3619. doi: 10.1128/IAI.00439-13.
  • Tenter AM, Heckeroth AR, Weiss LM. 2000. Toxoplasma gondii: from animals to humans. Int J Parasitol. 30(12–13):1217–1258. doi: 10.1016/s0020-7519(00)00124-7.
  • Uehara S, Higuchi Y, Yoneda N, Yamazaki H, Suemizu H. 2021. UDP-glucuronosyltransferase 1A4-mediated N2-glucuronidation is the major metabolic pathway of lamotrigine in chimeric NOG-TKm30 mice with humanised-livers. Xenobiotica. 51(10):1146–1154. doi: 10.1080/00498254.2021.1972492.
  • Uehara S, Uno Y, Inoue T, Kawano M, Shimizu M, Toda A, Utoh M, Sasaki E, Yamazaki H. 2015. Novel marmoset cytochrome P450 2C19 in livers efficiently metabolizes human P450 2C9 and 2C19 substrates, S-warfarin, tolbutamide, flurbiprofen, and omeprazole. Drug Metab Dispos. 43(10):1408–1416. doi: 10.1124/dmd.115.066100.
  • Uehara S, Uno Y, Inoue T, Kawano M, Shimizu M, Toda A, Utoh M, Sasaki E, Yamazaki H. 2016. Individual differences in metabolic clearance of S-warfarin efficiently mediated by polymorphic marmoset cytochrome P450 2C19 in livers. Drug Metab Dispos. 44(7):911–915. doi: 10.1124/dmd.116.070383.
  • Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. 2021. Methyl-hydroxylation and subsequent oxidation to produce carboxylic acid is the major metabolic pathway of tolbutamide in chimeric TK-NOG mice transplanted with human hepatocytes. Xenobiotica. 51(5):582–589. doi: 10.1080/00498254.2021.1875515.
  • Uehara S, Murayama N, Higuchi Y, Yoneda N, Yamazaki H, Suemizu H. 2022. Comparison of mouse and human cytochrome P450 mediated-drug metabolising activities in hepatic and extrahepatic microsomes. Xenobiotica 52(3):229–239. doi:10.1080/00498254.2022.2066581.
  • Uno Y, Uehara S, Yamazaki H. 2016. Utility of non-human primates in drug development: comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem Pharmacol. 121:1–7. doi: 10.1016/j.bcp.2016.06.008.
  • Uno Y, Uehara S, Yamazaki H. 2022. Drug-oxidizing and conjugating non-cytochrome P450 (non-P450) enzymes in cynomolgus monkeys and common marmosets as preclinical models for humans. Biochem Pharmacol. 197:114887. doi: 10.1016/j.bcp.2021.114887.
  • Winter HR, Unadkat JD. 2005. Identification of cytochrome P450 and arylamine N-acetyltransferase isoforms involved in sulfadiazine metabolism. Drug Metab Dispos. 33(7):969–976. doi: 10.1124/dmd.104.002998.
  • Yamazaki H, Shimada T. 1997. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 346(1):161–169. doi: 10.1006/abbi.1997.0302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.