Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 53, 2023 - Issue 10-11
122
Views
0
CrossRef citations to date
0
Altmetric
Clinical Pharmacokinetics and Metabolism

Population pharmacokinetics of mycophenolic acid and dose optimisation in adult Chinese kidney transplant recipients

, , , , , & show all
Pages 603-612 | Received 02 Oct 2023, Accepted 20 Nov 2023, Published online: 28 Nov 2023

References

  • Allison AC, Eugui EM. 2005. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation. 80(Supplement):S181–S190. doi: 10.1097/01.tp.0000186390.10150.66.
  • Baldelli S, Merlini S, Perico N, Nicastri A, Cortinovis M, Gotti E, Remuzzi G, Cattaneo D. 2007. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics. 8(9):1127–1141. doi: 10.2217/14622416.8.9.1127.
  • Baraldo M. 2008. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin Drug Metab Toxicol. 4(2):175–192. doi: 10.1517/17425255.4.2.175.
  • Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, et al. 2021. Personalized therapy for mycophenolate: consensus report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit. 43(2):150–200. doi: 10.1097/FTD.0000000000000871.
  • Bohnert T, Gan LS. 2013. Plasma protein binding: from discovery to development. J Pharm Sci. 102(9):2953–2994. doi: 10.1002/jps.23614.
  • Bouamar R, Hesselink DA, van Schaik RH, Weimar W, van der Heiden IP, de Fijter JW, Kuypers DR, van Gelder T. 2012. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients. Pharmacogenet Genomics. 22(6):399–407. doi: 10.1097/FPC.0b013e32834a8650.
  • Bowalgaha K, Miners JO. 2001. The glucuronidation of mycophenolic acid by human liver, kidney and jejunum microsomes. Brit J Clinical Pharma. 52(5):605–609. doi: 10.1046/j.0306-5251.2001.01487.x.
  • Bullingham R, Monroe S, Nicholls A, Hale M. 1996. Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration. J Clin Pharma. 36(4):315–324. doi: 10.1002/j.1552-4604.1996.tb04207.x.
  • Bullingham RE, Nicholls AJ, Kamm BR. 1998. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 34(6):429–455. doi: 10.2165/00003088-199834060-00002.
  • Chen B, Shao K, An HM, Shi HQ, Lu JQ, Zhai XH, Liu XX, Wang XH, Xu D, Zhou PJ. 2019. Population pharmacokinetics and Bayesian estimation of mycophenolic acid exposure in Chinese renal allograft recipients after administration of EC-MPS. J Clin Pharma. 59(4):578–589. doi: 10.1002/jcph.1352.
  • Colom H, Andreu F, van Gelder T, Hesselink DA, de Winter BCM, Bestard O, Torras J, Cruzado JM, Grinyó JM, Lloberas N. 2018. Prediction of free from total mycophenolic acid concentrations in stable renal transplant patients: a population-based approach. Clin Pharmacokinet. 57(7):877–893. doi: 10.1007/s40262-017-0603-8.
  • Colom H, Lloberas N, Andreu F, Caldés A, Torras J, Oppenheimer F, Sanchez-Plumed J, Gentil MA, Kuypers DR, Brunet M, et al. 2014. Pharmacokinetic modeling of enterohepatic circulation of mycophenolic acid in renal transplant recipients. Kidney International. 85(6):1434–1443. doi: 10.1038/ki.2013.517.
  • de Winter BC, Mathot RA, Sombogaard F, Neumann I, van Hest RM, Doorduijn JK, van Gelder T. 2010. Differences in clearance of mycophenolic acid among renal transplant recipients, hematopoietic stem cell transplant recipients, and patients with autoimmune disease. Ther Drug Monit. 32(5):606–614. doi: 10.1097/FTD.0b013e3181efd715.
  • de Winter BC, Mathot RA, Sombogaard F, Vulto AG, van Gelder T. 2011. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol. 6(3):656–663. doi: 10.2215/CJN.05440610.
  • de Winter BC, van Gelder T, Glander P, Cattaneo D, Tedesco-Silva H, Neumann I, Hilbrands L, van Hest RM, Pescovitz MD, Budde K, et al. 2008. Population pharmacokinetics of mycophenolic acid: a comparison between enteric-coated mycophenolate sodium and mycophenolate mofetil in renal transplant recipients. Clin Pharmacokinet. 47(12):827–838. doi: 10.2165/0003088-200847120-00007.
  • de Winter BC, van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA. 2009. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. 36(6):541–564. doi: 10.1007/s10928-009-9136-6.
  • Filler G, Alvarez-Elías AC, McIntyre C, Medeiros M. 2017. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol. 32(1):21–29. doi: 10.1007/s00467-016-3352-2.
  • Freshwater T, Kondic A, Ahamadi M, Li CH, de Greef R, de Alwis D, Stone JA. 2017. Evaluation of dosing strategy for pembrolizumab for oncology indications. j Immunotherapy Cancer. 5(1):43. doi: 10.1186/s40425-017-0242-5.
  • Guo D, Pang LF, Han Y, Yang H, Wang G, Tan ZR, Zhang W, Zhou HH. 2013. Polymorphisms of UGT1A9 and UGT2B7 influence the pharmacokinetics of mycophenolic acid after a single oral dose in healthy Chinese volunteers. Eur J Clin Pharmacol. 69(4):843–849. doi: 10.1007/s00228-012-1409-0.
  • Hesselink DA, van Hest RM, Mathot RA, Bonthuis F, Weimar W, de Bruin RW, van Gelder T. 2005. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant. 5(5):987–994. doi: 10.1046/j.1600-6143.2005.00779.x.
  • Jiang X, Fu Q, Jing Y, Kong Y, Liu H, Peng H, Rexiti K, Wei X. 2023. Personalized dose of adjuvant imatinib in patients with gastrointestinal stromal tumors: results from a population pharmacokinetic analysis. DDDT. 17:809–820. doi: 10.2147/DDDT.S400986.
  • Jiang Z, Hu N. 2021. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics. 22(15):1019–1040. doi: 10.2217/pgs-2021-0087.
  • Jing Y, Kong Y, Hou X, Liu H, Fu Q, Jiao Z, Peng H, Wei X. 2021. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients. J Clin Pharm Ther. 46(4):1117–1128. doi: 10.1111/jcpt.13407.
  • Kiang TKL, Ensom MHH. 2019. Exposure-toxicity relationships of mycophenolic acid in adult kidney transplant patients. Clin Pharmacokinet. 58(12):1533–1552. doi: 10.1007/s40262-019-00802-z.
  • Kiang TKL, Partovi N, Shapiro RJ, Berman JM, Collier AC, Ensom MHH. 2018. Regression and genomic analyses on the association between dose-normalized mycophenolic acid exposure and absolute neutrophil count in steroid-free, de novo kidney transplant recipients. Clin Drug Investig. 38(11):1011–1022. doi: 10.1007/s40261-018-0694-5.
  • Kuypers DR, Le Meur Y, Cantarovich M, Tredger MJ, Tett SE, Cattaneo D, Tönshoff B, Holt DW, Chapman J, Gelder T. 2010. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. CJASN. 5(2):341–358. doi: 10.2215/CJN.07111009.
  • Li LQ, Chen DN, Li CJ, Li QP, Chen Y, Fang P, Zheng P, Lu HJ, Ye DM, Wan HY, et al. 2018. Impact of UGT2B7 and ABCC2 genetic polymorphisms on mycophenolic acid metabolism in Chinese renal transplant recipients. Pharmacogenomics. 19(17):1323–1334. doi: 10.2217/pgs-2018-0114.
  • Liu Y, Zhang H, Li J, Liu L, Wu C, Fu Q, Huang M, Chen X, Wang C, Chen P. 2022. Pharmacokinetics of free and total mycophenolic acid in paediatric and adult renal transplant recipients: exploratory analysis of the effects of clinical factors and gene variants. Basic Clin Pharma Tox. 131(1):60–73. doi: 10.1111/bcpt.13743.
  • Lloberas N, Torras J, Cruzado J. M {a }, Andreu F, Oppenheimer F, Sanchez-Plumed J, Gentil MA, Brunet M, Ekberg H, Grinyo J. M {a }, Spanish Pharmacogenetic Symphony Substudy Group 2011. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the pharmacogenomic substudy within the Symphony Study. Nephrol Dial Transplant. 26(11):3784–3793. doi: 10.1093/ndt/gfr130.
  • Lyu J, Song C, Mao P, Wang G. 2023. Association between transporter gene polymorphism and mycophenolic acids exposure and related adverse reactions. Central South Pharm. 21(6):1672–2981.
  • Mao JJ, Jiao Z, Yun HY, Zhao CY, Chen HC, Qiu XY, Zhong MK. 2018. External evaluation of population pharmacokinetic models for ciclosporin in adult renal transplant recipients. Brit J Clinical Pharma. 84(1):153–171. doi: 10.1111/bcp.13431.
  • Meaney CJ, Sudchada P, Consiglio JD, Wilding GE, Cooper LM, Venuto RC, Tornatore KM. 2019. Influence of calcineurin inhibitor and sex on mycophenolic acid pharmacokinetics and adverse effects post-renal transplant. J Clin Pharma. 59(10):1351–1365. doi: 10.1002/jcph.1428.
  • Metz DK, Holford N, Kausman JY, Walker A, Cranswick N, Staatz CE, Barraclough KA, Ierino F. 2019. Optimizing mycophenolic acid exposure in kidney transplant recipients: time for target concentration intervention. Transplantation. 103(10):2012–2030. doi: 10.1097/TP.0000000000002762.
  • Okour M, Jacobson PA, Ahmed MA, Israni AK, Brundage RC. 2018. Mycophenolic acid and its metabolites in kidney transplant recipients: a semimechanistic enterohepatic circulation model to improve estimating exposure. J Clin Pharma. 58(5):628–639. doi: 10.1002/jcph.1064.
  • Picard N, Ratanasavanh D, Prémaud A, Le Meur Y, Marquet P. 2005. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 33(1):139–146. doi: 10.1124/dmd.104.001651.
  • Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, Giacomini KM, Marquet P. 2010. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 87(1):100–108. doi: 10.1038/clpt.2009.205.
  • Quintairos L, Colom H, Millán O, Fortuna V, Espinosa C, Guirado L, Budde K, Sommerer C, Lizana A, López-Púa Y, et al. 2021. Early prognostic performance of miR155-5p monitoring for the risk of rejection: logistic regression with a population pharmacokinetic approach in adult kidney transplant patients. PLOS One. 16(1):e0245880. doi: 10.1371/journal.pone.0245880.
  • Reséndiz-Galván JE, Romano-Aguilar M, Medellín-Garibay SE, Milán-Segovia RDC, Niño-Moreno PDC, Jung-Cook H, Chevaile-Ramos JA, Romano-Moreno S. 2020. Population pharmacokinetics of mycophenolic acid in adult kidney transplant patients under prednisone and tacrolimus regimen. Eur J Pharm Sci. 150:105370. doi: 10.1016/j.ejps.2020.105370.
  • Rong Y, Patel V, Kiang TKL. 2021. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin Drug Metab Toxicol. 17(12):1369–1406. doi: 10.1080/17425255.2021.2027906.
  • Saint-Marcoux F, Vandierdonck S, Prémaud A, Debord J, Rousseau A, Marquet P. 2011. Large scale analysis of routine dose adjustments of mycophenolate mofetil based on global exposure in renal transplant patients. Ther Drug Monit. 33(3):285–294. doi: 10.1097/FTD.0b013e31821633a6.
  • Sheiner LB, Beal SL. 1981. Some suggestions for measuring predictive performance. J Pharmacokin Biopharmaceut. 9(4):503–512. doi: 10.1007/BF01060893.
  • Shen J, Li Z, Chen J, Song Z, Zhou Z, Shi Y. 2016. SHEsisPlus, a toolset for genetic studies on polyploid species. Sci Rep. 6(1):24095. doi: 10.1038/srep24095.
  • Sheng C, Zhao Q, Niu W, Qiu X, Zhang M, Jiao Z. 2020. Effect of protein binding on exposure of unbound and total mycophenolic acid: a population pharmacokinetic analysis in Chinese adult kidney transplant recipients. Front Pharmacol. 11:340. doi: 10.3389/fphar.2020.00340.
  • Shipkova M, Wieland E, Schütz E, Wiese C, Niedmann PD, Oellerich M, Armstrong VW. 2001. The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes. Transplant Proceed. 33(1–2):1080–1081. doi: 10.1016/S0041-1345(00)02424-6.
  • Shu Q, Fan Q, Hua B, Liu H, Wang S, Liu Y, Yao Y, Xie H, Ge W. 2021. Influence of SLCO1B1 521T>C, UGT2B7 802C>T and IMPDH1 -106G>A genetic polymorphisms on mycophenolic acid levels and adverse reactions in Chinese autoimmune disease patients. PGPM. 14:713–722. doi: 10.2147/PGPM.S295964.
  • Staatz CE, Duffull SB, Kiberd B, Fraser AD, Tett SE. 2005. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol. 61(7):507–516. doi: 10.1007/s00228-005-0927-4.
  • Staatz CE, Tett SE. 2007. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 46(1):13–58. doi: 10.2165/00003088-200746010-00002.
  • Staatz CE, Tett SE. 2014. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 88(7):1351–1389. doi: 10.1007/s00204-014-1247-1.
  • Stoll DR, Li X, Wang X, Carr PW, Porter SE, Rutan SC. 2007. Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A. 1168(1–2):3–43. doi: 10.1016/j.chroma.2007.08.054.
  • Sun SS, Shao K, Lu JQ, An HM, Shi HQ, Zhou PJ, Chen B. 2023. Influence of calcineurin inhibitors and genetic polymorphism of transporters on enterohepatic circulation and exposure of mycophenolic acid in Chinese adult renal allograft recipients. J Clin Pharma. 63(4):410–420. doi: 10.1002/jcph.2176.
  • van Gelder T, Le Meur Y, Shaw LM, Oellerich M, DeNofrio D, Holt C, Holt DW, Kaplan B, Kuypers D, Meiser B, et al. 2006. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit. 28(2):145–154. doi: 10.1097/01.ftd.0000199358.80013.bd.
  • van Hest RM, Mathot RA, Vulto AG, Ijzermans JN, van Gelder T. 2006. Within-patient variability of mycophenolic acid exposure. Ther Drug Monit. 28(1):31–34. doi: 10.1097/01.ftd.0000194504.62892.b2.
  • van Hest RM, van Gelder T, Bouw R, Goggin T, Gordon R, Mamelok RD, Mathot RA. 2007. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Brit J Clinical Pharma. 63(6):741–752. doi: 10.1111/j.1365-2125.2006.02841.x.
  • Wang P, Xie H, Zhang Q, Tian X, Feng Y, Qin Z, Yang J, Shang W, Feng G, Zhang X. 2022. Population pharmacokinetics of mycophenolic acid in renal transplant patients: a comparison of the early and stable posttransplant stages. Front Pharmacol. 13:859351. doi: 10.3389/fphar.2022.859351.
  • Xie XC, Li J, Wang HY, Li HL, Liu J, Fu Q, Huang JW, Zhu C, Zhong GP, Wang XD, et al. 2015. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol Sin. 36(5):644–650. doi: 10.1038/aps.2015.7.
  • Yang CL, Sheng CC, Liao GY, Su Y, Feng LJ, Xia Q, Jiao Z, Xu DJ. 2021. Genetic polymorphisms in metabolic enzymes and transporters have no impact on mycophenolic acid pharmacokinetics in adult kidney transplant patients co-treated with tacrolimus: a population analysis. J Clin Pharm Ther. 46(6):1564–1575. doi: 10.1111/jcpt.13488.
  • Yu ZC, Zhou PJ, Wang XH, Françoise B, Xu D, Zhang WX, Chen B. 2017. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin. 38(11):1566–1579. doi: 10.1038/aps.2017.115.
  • Zhang HX, Sheng CC, Liu LS, Luo B, Fu Q, Zhao Q, Li J, Liu YF, Deng RH, Jiao Z, et al. 2019. Systematic external evaluation of published population pharmacokinetic models of mycophenolate mofetil in adult kidney transplant recipients co-administered with tacrolimus. Brit J Clinical Pharma. 85(4):746–761. doi: 10.1111/bcp.13850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.