Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 54, 2024 - Issue 1
115
Views
0
CrossRef citations to date
0
Altmetric
Pharmacogenetics

Effect of genetic polymorphisms on the pharmacokinetics of gefitinib in healthy Chinese volunteers

, , , , , , , & show all
Pages 38-44 | Received 19 Oct 2023, Accepted 07 Dec 2023, Published online: 18 Dec 2023

References

  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
  • Cusatis G, Gregorc V, Li J, Spreafico A, Ingersoll RG, Verweij J, Ludovini V, Villa E, Hidalgo M, Sparreboom A, et al. 2006. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst. 98(23):1739–1742. doi: 10.1093/jnci/djj469.
  • Fang P, Zheng X, He J, Ge H, Tang P, Cai J, Hu G. 2017. Functional characterization of wild-type and 24 CYP2D6 allelic variants on gefitinib metabolism in vitro. Drug Des Devel Ther. 11:1283–1290. doi: 10.2147/DDDT.S133814.
  • Hsiue EH, Lee JH, Lin CC, Yang JC. 2016. Safety of gefitinib in non-small cell lung cancer treatment. Expert Opin Drug Saf. 15(7):993–1000. doi: 10.1080/14740338.2016.1192605.
  • Kobayashi H, Sato K, Niioka T, Miura H, Ito H, Miura M. 2015. Relationship among gefitinib exposure, polymorphisms of its metabolizing enzymes and transporters, and side effects in Japanese patients with non-small-cell lung cancer. Clin Lung Cancer. 16(4):274–281. doi: 10.1016/j.cllc.2014.12.004.
  • Kobayashi H, Sato K, Niioka T, Takeda M, Okuda Y, Asano M, Ito H, Miura M. 2016. Effects of polymorphisms in CYP2D6 and ABC transporters and side effects induced by gefitinib on the pharmacokinetics of the gefitinib metabolite, O-desmethyl gefitinib. Med Oncol. 33(6):57. doi: 10.1007/s12032-016-0773-5.
  • Kwok WC, Lam DCL, Ip MSM, Tam TCC, Ho JCM. 2022. Association of genetic polymorphisms of CYP3A4 and CYP2D6 with gefitinib-induced toxicities. Anticancer Drugs. 33(10):1139–1144. doi: 10.1097/CAD.0000000000001360.
  • Li J, Zhao M, He P, Hidalgo M, Baker SD. 2007. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 13(12):3731–3737. doi: 10.1158/1078-0432.CCR-07-0088.
  • Ma Y, Xin S, Huang M, Yang Y, Zhu C, Zhao H, Zhang Y, Chen L, Zhao Y, Li J, et al. 2017. Determinants of Gefitinib toxicity in advanced non-small cell lung cancer (NSCLC): a pharmacogenomic study of metabolic enzymes and transporters. Pharmacogenomics J. 17(4):325–330. doi: 10.1038/tpj.2016.31.
  • Ma Y, Xin S, Lin Q, Zhuang W, Zhao Y, Zhu X, Zhao H, Huang M, Xun X, Yang Y, et al. 2019. The analysis of pharmacokinetic and pharmacogenomic impact on gefitinib efficacy in advanced non-small cell lung cancer patients: results from a prospective cohort study. Ann Transl Med. 7(24):806–806. doi: 10.21037/atm.2019.12.60.
  • Mizoguchi K, Nakamura Y, Sano K, Sato S, Ikegami Y, Motoshima K, Takemoto S, Ogawara D, Senju H, Sugasaki N, et al. 2016. Pharmacokinetic parameters of gefitinib predict efficacy and toxicity in patients with advanced non-small cell lung cancer harboring EGFR mutations. Cancer Chemother Pharmacol. 78(2):377–382. doi: 10.1007/s00280-016-3097-4.
  • Rawluk J, Waller CF. 2018. Gefitinib. Recent Results Cancer Res. 211:235–246. doi: 10.1007/978-3-319-91442-8_16.
  • Sakamoto S, Sato K, Takita Y, Izumiya Y, Kumagai N, Sudo K, Hasegawa Y, Yokota H, Akamine Y, Okuda Y, et al. 2020. ABCG2 C421A polymorphisms affect exposure of the epidermal growth factor receptor inhibitor gefitinib. Invest New Drugs. 38(6):1687–1695. doi: 10.1007/s10637-020-00946-x.
  • Sausville LN, Williams SM, Pozzi A. 2019. Cytochrome P450 epoxygenases and cancer: a genetic and a molecular perspective. Pharmacol Ther. 196:183–194. doi: 10.1016/j.pharmthera.2018.11.009.
  • Semba Y, Akiyoshi T, Hibino H, Imaoka A, Ohtani H. 2020. Profile of the inhibitory effects of gefitinib on CYP2D6 variants in vitro. Int J Clin Pharmacol Ther. 58(10):539–542. doi: 10.5414/CP203698.
  • Swaisland HC, Cantarini MV, Fuhr R, Holt A. 2006. Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin Pharmacokinet. 45(6):633–644. doi: 10.2165/00003088-200645060-00006.
  • Tamura M, Kondo M, Horio M, Ando M, Saito H, Yamamoto M, Horio Y, Hasegawa Y. 2012. Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (ABCG2, ABCB1) and gefitinib toxicity. Nagoya J Med Sci. 74(1-2):133–140.
  • Wan Z, Guo L, Li P, Zhao Z, Xu B, Ren L, Yan Y, Liu H, Zhang Y, Liu L. 2020. Determinants of gefitinib pharmacokinetics in healthy Chinese male subjects: a pharmacogenomic study of cytochrome p450 enzymes and transporters. J Clin Pharm Ther. 45(5):1159–1167. doi: 10.1111/jcpt.13168.
  • Zhang H, Li Q, Zhu X, Wu M, Li C, Li X, Liu C, Shen Z, Ding Y, Hua S. 2018. Association of Variability and Pharmacogenomics With Bioequivalence of Gefitinib in Healthy Male Subjects. Front Pharmacol. 9:849. doi: 10.3389/fphar.2018.00849.
  • Zhao C, Han SY, Li PP. 2017. Pharmacokinetics of gefitinib: roles of drug metabolizing enzymes and transporters. Current Drug Delivery. 14(2):282–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.