Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 28, 1998 - Issue 7
290
Views
75
CrossRef citations to date
0
Altmetric
Research Article

The CYP2 family: models, mutants and interactions

Pages 617-661 | Published online: 22 Sep 2008

References

  • AOYAMA, T., KORZEWKA, K., NAGATA, K., ADESNIX, M., REISS, A., LAPENSON, D. P., GILLETTE, J., GELBOIN, H. V., WAXMAN, D. J. and GONZALEZ, F. J., 1989, Sequence requirements for cytochrome P450IIB1 catalytic activity, Journal of Biological Chemistry, 264, 21327–21333.
  • ARCHAKOV, A. I. and BACHMANOVA, G. I., 1990, Cytochrome P450 and Active Oxygen (London: Taylor & Francis).
  • ATKINS, W. M. and SLIGAR, S. G., 1988, The roles of active site hydrogen bonding in cytochrome P-450e3m as revealed by site-directed mutagenesis, 263, 18842–18849.
  • ATKINS, W. M. and SLIGAR, S. G., 1989, Molecular recognition in cytochrome P-450: alteration of regioselective alkane hydroxylation via protein engineering, Journal of the American Chemical Society, 111, 2715–2717.
  • AYALOGU, E. O., SNELLING, J., LEWIS, D. F. V., TALWAR, S., CLIFFORD, M. N. and IOANNIDES, C., 1995, Selective induction of hepatic CYP1A2 by the oral administration of caffeine to rats, Biochimka et Biophyska Acta, 1272, 89–94.
  • BACHMANN, K. A., 1996, The cytochrome P450 enzymes of hepatic drug metabolism: how are their activities assessed in vivo, and what is their clinical relevance?, American Journal of Therapeutics, 3, 1–18.
  • BERNHARDT, R., 1995, Cytochrome P450: structure, function, and generation of reactive oxygen species, Reviews of Physiology, Biochemistry and Pharmacology, 127, 137–221.
  • BERNHARDT, R., KRAFT, R. and RUCKPAUL, K., 1989, Molecular mechanism of P450/reductase interaction. In I. Schuster (ed.), Cytochrome P450 : Biochemistry and Biophysics (London: Taylor & Francis), pp. 320–323.
  • BERNHARDT, R., BECKERT, V., UHLMANN, H. and SUGAR, S. G., 1994, Studies On electron transfer pathways in cytochrome P450 systems. In M. C. Lechner (ed.), Cytochrome P450 (Paris: Libbey), pp. 387–394.
  • BODDUPALLI, S. S., PRAMANIK, B. C., SLAUGHTER, C. A., ESTABROOK, R. W. and PETERSON, J. A., 1992, Fatty acid monooxygenation by P4503: product identification and proposed mechanisms for the sequential hydroxylation reactions, Archives of Biochemistry and Biophysics, 292, 20–28.
  • BORN, S. L., JOHN, G. H., HARLOW, G. R. and HALPERT, J. R., 1995, Characterization of the progesterone 21-hydroxylase activity of canine cytochrome P450 PBD-2/1)450 2B11 through reconstitution, heterologous expression, and site-directed mutagenesis, Drug Metabolism and Disposition, 23, 702–707.
  • BOYD, G. W., Coomas, M. M., IOANNIDES C., LEWIS, D. F. V., SHELLING, J. and TSAKALOF, A., 1995, Species variation in the metabolism of 15,16-dihydro-11-methylcyclo penta [a]phenanthren-17-one to its 3,4-dihydrodiol, the proximate carcinogen, Carcinogenesis, 16, 2351–2355.
  • CHANG, Y.-T., STIFFELMAN, O. B., VAKSER, I. A., LOW, G. H., BRIDGES, A. and WASKEL L., 1997, Construction of a 3D model of cytochrome P450 2B4, Protein Engineering, 10, 119–129.
  • CHEN, C.-D. and KEMPER, B., 1996, Different structural requirements at specific proline residue positions in the conserved proline-rich region of cytochrome P450 2C2, Journal of Biological Chemistry, 271, 28607–28611.
  • CHEUNG, Y.-L., LEWIS, D. F. V., RIDD, T. I., GRAY, T. J. B. and IOANNIDES, C., 1997, Diamino-naphthalenes and related amino compounds: mutagenicity, CYP1A induction and interaction with the Ah receptor, Toxicology, 118, 115–127.
  • CHOLERTON, S., DALY, A. K. and IDLE, J. R., 1992, The role of individual human cytochromes P450 in drug metabolism and clinical response, Trends in Pharmaceutical Science, 13, 434–439.
  • CRESPI, C. L. and MILLER, V. P., 1997, The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH: cytochrome P450 oxidoreductase, Pharmacogenetics, 7, 203–210.
  • CUPP -VICKERY, J. R. and PouLos, T. L., 1995, Structure of cytochrome P450,yF involved in erythromycin biosynthesis, Structural Biology, 2, 144–153.
  • DALY, A. K., BROCKM6LLER, J., BROLY, F., EICHELBAUM, M., EVANS, W. E., GONZALEZ, F. J., HUANG, J.-D ., IDLE, J. R., INGEL MAN - S UNDBERG M ISHIZAKI, T., JAcQz-AIGRAIN, E., MEYER, U. A., NEBERT, D. W., STEEN, V. M., WOLF, C. R. and ZANGER, V. M., 1996, Nomenclature for human CYP2D6 alleles, Pharmacogenetics, 6, 193–201.
  • DE GROOT, M. J., VERMEULEN, N. P. E., KRAMER, J. D., VAN ACKER, F. A. A. and DONNE.-0PDEN KELDER, G. M., 1996, A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450101, P450102 and P450108, Chemical Research in Toxicology, 9, 1079–1091.
  • DEGTYARENKO, K. N. and ARCHAKOV, A. I., 1993, Molecular evolution of P450 superfamily and P450-containing monooxygenase systems, FEBS Letters, 332, 1–8.
  • DEPREZ, E., GERBER, N. C., DiPkimo, C., Douzou, P., SUGAR, S. G. and Hui BON HOA, G., 1994, Electrostatic control of the substrate access channel in cytochrome P-450, Biochemistry, 33, 14464–14468.
  • DING, X., PENG, H.-M. and COON, M. J., 1994, Heterologous expression and structure-function analysis of CYP2A10 and CYP2A11, which differ in only eight amino acids but have strikingly different activities toward testosterone and coumarin. In M. C. Lechner (ed.), Cytochrome P450 (Paris: Libbey), pp. 885–888.
  • ELLIS, S. W., HAYHURST, G. P. SMITH, G., LIGHTFOOT, T., WANG, M. M. S., SIIVIULA, A. P. ACKLAND, M. J., STERNBERG, M. J. E., LENNARD, M. S., TUCKER, G. T. and WOLF, C. R., 1995, Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6, Journal of Biological Chemistry, 270, 29055–29058.
  • ELLIS, S. W., ROWLAND, K., ACKLAND, M. J., REKKA, E., SIMULA, A. P., LENNARD, M. S., WOLF, C. R. and TUCKER, G. T., 1996, Influence of amino acid residue 374 of cytochrome P-450 2D6, CYP2D6, on the regio- and enantio-selective metabolism of metoprolol, Biochemical Journal, 316, 647–654.
  • EPSTEIN, P. M., CURTI, M. JANSSON, I., HUANG, C.-H. and SCHENKMAN, J. B., 1989, Phosphorylation of cytochrome P450: regulation by cytochrome b5, Archives of Biochemistry and Biophysics, 271, 424–432.
  • FALETTO, M. B., LINKO, P. and GOLDSTEIN, J. A., 1992, A single amino acid mutation, Seri, Cys, determines the polymorphism in cytochrome P450g, P4502C13, by altering protein stability, Journal of Biological Chemistry, 267, 2032–2037.
  • FERNANDEZ -SALGUERO, P., HOFFMAN, S. M. G., CHOLERTON, S. M. G., MOHRENWEISER, H., RAUNIO H., RAUTIO, A., PELKONEN, O., HUANG, J.-D., EVANS, W. E. IDLE, J. R. and GONZALEZ, F. J., 1995, A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles, American Journal of Human Genetics, 57, 651–660.
  • FOWLER, S. M., ENGLAND, P. A., WESTLAKE, A. C. G., ROUCH, D. R., NICKERSON, D. P., BLUNT, C., BRAYBROOK, D., WEST, S., WONG, L.-L. and FLITSCH, S., 1994, Cytochrome monooxygenase can be redesigned to catalyse the regioselective aromatic hydroxylation of diphenylmethane, Journal of the Chemical Society, Chemical Communications, 2761–2762.
  • FUKUDA, T., ImAi, Y., KOMORI, M., NAKAMURA, M., KUSUNOSE, E., SATOUCHI, K. and KUSUNOSE, M., 1993, Replacement of Thr-303 of P450 2E1 with serine modifies the regioselectivity of its fatty acid hydroxylase activity, Journal of Biochemistry, 113, 7–12.
  • FULCO, A. J., 1991, N50,,3 and other inducible bacterial P450 cytochromes: biochemistry and regulation, Annual Review of Pharmacology and Toxicology, 31, 177–203.
  • FUNAE, Y. and IMAOKA, S., 1993, Cytochrome P450 in rodents. In J. B. Schenkman and H. Griem (eds), Cytochrome P450 (Berlin: Springer), pp. 221–238.
  • GEORGE, J. and FARRELL, G. C., 1991, Role of human hepatic cytochromes P450 in drug metabolism and toxicity, Australian and New Zealand Journal of Medicine, 21, 356–362.
  • GERBER, N. C. and S LIGAR S. G., 1992, Catalytic mechanism of cytochrome P-450: evidence for a distal charge relay, Journal of the American Chemical Society, 114, 8742–8743.
  • GERBER, N. C. and SLIGAR, S. G., 1994, A role for Asp-251 in cytochrome P450oxygen activation,Journal of Biological Chemistry, 269, 4260–4266.
  • GIBSON, G. G. and SKETT, P., 1994, Introduction to Drug Metabolism, 2nd edn (London: Chapman & Hall).
  • GOLDSTEIN, J. A. and DE MORAIS, S. M. F., 1994, Biochemistry and molecular biology of the human CYP2C subfamily, Pharmacogenetics, 4, 285–299.
  • GOLLY, I. and HLAVICA, P., 1992, Chemical modification of lysine residues in cytochrome P450LM2, P450IIB4): influence on haem liganding of arylamines, Archives of Biochemistry and Biophysics, 292, 287–294.
  • GONZALEZ, F. J., 1992, Human cytochromes P450: problems and prospects, Trends in Pharmaceutical Science, 13, 346–352.
  • GONZALEZ, F. J. and GELBOIN, H. V., 1994, Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins, Drug Metabolism Reviews, 26, 165–183.
  • GONZALEZ, F. J. and IDLE, J. R., 1994, Pharrnacogenetic phenotyping and genotyping, Clinical Pharmacokinetics, 26, 59–70.
  • GONZALEZ, F. J. and NEBERT, D. W., 1990, Evolution of the P450 gene superfamily, Trends in Genetics, 6, 182–186.
  • GOTOH, O., 1992, Substrate recognition sites in cytochrome P450 family 2, CYP2, proteins inferred from comparative analyses of amino acid and coding nucleotide sequences, Journal of Biological Chemistry, 267, 83–90.
  • GRAHAM -LORENCE, S. and PETERSON, J. A., 1996, P450s : structural similarities and functional differences, F ASEB Journal, 10, 206–214.
  • GRAHAM -LORENCE, S., SANDERS, D. and PETERSON, J. A., 1994, Mutants affecting substrate recognition and substrate binding in P450BM-P. In M. C. Lechner (ed.), Cytochrome P450 (Paris: Libbey), pp. 471–473.
  • GRAHAM -LORENCE, S., TRUAN, G., PETERSON, J. A., FALCK, J. R., WEI, S., HELVIG, C. and CAPDEVILA J. H., 1997, An active site substitution, F87V, converts cytochrome P450 BM-3 into a regio-and stereoselective (145,15R)- arachidonic acid epoxygenase, Journal of Biological Chemistry, 272, 1127–1135.
  • GUENGERICH, F. P., 1991, Reactions and significance of cytochrome P-450 enzymes, Journal of Biological Chemistry, 266, 10019–10022.
  • GUENGERICH, F. P., 1993, Cytochrome P450 enzymes, American Scientist, 81, 440–447.
  • GUENGERICH, F. P., 1994, Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity, Toxicology Letters, 70, 133–138.
  • GUENGERICH, F. P., 1995a, Cytochrome P450 proteins and potential utilization in biodegradation, Environmental Health Perspectives, 103, 25–28.
  • GUENGERICH, F. P., 1995b, Human cytochrome P450 enzymes. In P. R. Ortiz de Montellano (ed.), Cytochrome P450 (New York: Plenum), pp. 473–535.
  • GUENGERICH, F. P. (ed.), 1987, Mammalian Cytochromes P-450 (Boca Raton: CRC Press).
  • HADIDI, H., ZAHLSEN, K., IDLE, J. R. and CHOLERTON, S., 1997, A single amino acid substitution, Leu160His, in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin, Food and Chemical Toxicity, 35, 903–907.
  • HAINING, R. L., HUNTER, A. P., VERONESE, M. E., TRAGER, W. F. and RETTIE, A. E., 1996, Allelic variants of human cytochrome P4502C9: baculovirus-mediated expression, purification, struc-tural characterization, substrate stereoselectivity and prochiral selectivity of wild-type and I359L mutant forms, Archives of Biochemistry and Biophysics, 333, 447–458.
  • HALPERT, J. R. and HE, Y.-A., 1993, Engineering of cytochrome P4502B1 specificity, Journal of Biological Chemistry, 268, 4453–4457.
  • HANIOKA, N., GONZALEZ, F. J., LINDBERG, N. A., Liu, G., GELBOIN, H. V. and KORZEKWA, K. R., 1992, Site-directed mutagenesis of cytochrome P450s CYP2A1 and CYP2A2: influence of the distal helix on the kinetics of testosterone hydroxylation, Biochemistry, 31, 3364–3370.
  • HARLOW, G. R. and HALPERT, J. R., 1996, Mutagenesis study of Asp-290 in cytochrome P450 2B11 using a fusion protein with rat NADPH-cytochrome P450 reductase, Archives of Biochemistry and Biophysics, 326, 85–92.
  • HASEMANN, C. A., KURUMBAIL, R. G., BODDUPALLI, S. S., PETERSON, J. A. and DEISENHOFER, J., 1995, Structure and function of cytochromes P450: a comparative analysis of three crystal structures, Structure, 3, 41–62.
  • HASEMANN, C. A., RAVICHANDRAN, K. G., PETERSON, L A. and DEISENHOFER, J., 1994, Crystal structure and refinement of cytochrome P450, at 2.3A resolution, Journal of Molecular Biology, 236, 1169–1185.
  • HASLER, J. A., HARLOW, G. R., SZKLARZ, G. D., JOHN, G. M., KEDZIE, K. M. BURNETT, V. L., HE, Y.-A., KAMINSKY, L. S. and HALPERT, J. R., 1994, Site-directed mutagenesis of putative substrate recognition sites in cytochrome P450 2B11: importance of amino acid residues 114, 290, and 363 for substrate specificity, Molecular Pharmacology, 46, 338–345.
  • HAYHURST, G. P., 1997, Analysis of the structure-function relationships of P450 2D6 by site-directed mutagenesis, PhD thesis, University of Sheffield.
  • HE, Y,-A., BALFOUR, C. A., KEDZIE, K. M. and HALPERT, J. R., 1992, Role of residue 478 as a determinant of the substrate specificity of cytochrome P4502B1, Biochemistry, 31, 9220–9226.
  • HE, Y.-A., Luo, Z., KLEKOTKA, P. A., BURNETT, V. L. and HALPERT, J. R., 1994, Structural determinants of cytochrome P450 2B1 specificity: evidence for five substrate recognition sites, Biochemistry, 33, 4419–4424.
  • HE, Y. Q., HE, Y.-A. and HALPERT, J. R., 1995, Escherichia coli expression of site-directed mutants of cytochrome P4502B1 from 6 substrate recognition sites: substrate specificity and inhibitor selectivity studies, Chemical Research in Toxicology, 8, 574–579.
  • HORN, E. P., TUCKER, M. A. LAMBERT, G., SILVERMAN, D., ZAMETKIN, D., SINHA, R., HARTGE, T., LANDI, M. T. and CAPORASO, N. E., 1995, A study of gender-based cytochrome P4501A2 variability: a possible mechanism for the male excess of bladder cancer, Cancer Epidemiology, Biomarkers and Prevention, 4, 529–533.
  • Hsu, M.-H., GRIFFIN, K. J., WANG, Y., KEMPER, B. and JOHNSON, E. F., 1993, A single amino acid substitution confers progesterone 6, -hydroxylase activity to rabbit cytochrome P450 2C3, journal of Biological Chemistry, 268, 6939–6944.
  • IBEANU, G. C., GHANAYEN, B. I., LINKO, P., Li, L., PEDERSEN, L. G. and GOLDSTEIN, J. A., 1996, Identification of residues 99, 220, and 221 of human cytochrome P450 2C19 as key determinants of omeprazole hydroxylase activity, Journal of Biological Chemistry, 271, 12496–12501.
  • IMAI, Y. and NAKAMURA, M., 1989, Point mutations at threonine-301 modify substrate specificity of rabbit liver microsomal cytochromes P-450 (laurate, to-1) -hydroxylase and testosterone 16a-hydroxylase), Biochemical and Biophysical Research Communications, 158, 717–722.
  • IMAI, Y., SHIMADA, H., WATANABE, Y., MATSUSHIMA -HIBIYA, Y., MAKINO, R., KOGA, H., HORIUCHI, T. and ISHIMURA, Y., 1989, Uncoupling of the cytochrome P-450monooxygenase reaction by asingle mutation, threonine-252 to alanine or valine: a possible role of the hydroxy amino acid in oxygen activation, Proceedings of the National Academy of Sciences, USA, 86, 7823–7827.
  • INOUE, K., YAMAZAKI, H., ImIYA, K., AKASAKA, S., GUENGERICH, F. P. and SHIMADA, T., 1997, Relationship between CYP2C9 and 2C19 genotypes and tolbutamide methyl hydroxylation and S-mephenytoin C.-hydroxylation activities in livers of Japanese and Caucasian populations, Pharmacogenetks, 7, 103–113.
  • INOUYE, K. and CooN, M. J., 1985, Properties of the tryptophan residue in rabbit liver microsomal cytochrome P-450 isozyme 2 as determined by fluorescence, Biochemical and Biophysical Research Communications, 128, 676–682.
  • IOANNIDES, C. (ed.), 1996, Cytochromes P450: Metabolic and Toxicological Aspects (Boca Raton: CRC Press)
  • IWASAKI, M., LINDBERG, R. L. P., JUVONEN, R. O. and NEGISHI, M., 1993a, Site-directed mutagenesis of mouse steroid 7, -hydroxylase, cytochrome P-4507,): role of residue-209 in determining steroid-cytochrome P-450 interaction, Biochemical Journal, 291, 569–573.
  • IWASAKI, M., DARDEN, T. A., PARKER, C. E., TOMER, K. B., PEDERSEN, L. G. and NEGISHI, M., 1994, Inherent versatility of P-450 oxygenase, Journal of Biological Chemistry, 269, 9079–9083.
  • IWASAKI, M., DARDEN, T. A., PEDERSEN, L. G., DAVIS, D. G., JUVONEN, R. O., SUEYOSHI, T. and NEGISHI, M., 1993b, Engineering mouse P450,0i, to a novel coricosterone 15, -hydroxylase and modeling steroid-binding orientation in the substrate pocket. journal of Biological Chemistry, 268, 759–762.
  • IWASAKI, M., DAVIS, D. G., DARDEN, T. A. and PEDERSEN, L. G., 1995, Multiple steroid-binding orientations: alteration of regiospecificity of dehydroepiandrosterone 2- and 7-hydroxylase activities of cytochrome P-450 2a-5 by mutation of residue 209, Biochemical Journal, 306, 29–33.
  • JANSSON, I., CURTI, M., EPSTEIN, P. M., PETERSON, J. A. and SCHENKMAN J. B., 1990, Relationship between phosphorylation and cytochrome P450 destruction, Archives of Biochemistry and Biophysics, 283, 285–292.
  • JOHNSON, E. F., 1992, Mapping determinants of the substrate selectivities of P450 enzymes by site-directed mutagenesis, Trends in Pharmaceutical Sciences, 13, 122–126.
  • JUVONEN, R. O. IwAsmu, M., SUEYOSHI, T. and NEGISHI, M., 1993, Structural alteration of mouse P450,„„ by mutation of glycine-207 to proline: spin equilibrium, enzyme kinetics, and heat sensitivity, Biochemical Journal, 294, 31–34.
  • JUVONEN, R. O., IWASAKI, M. and NEGISHI, M., 1991, Structural function of residue-209 in coumarin 7-hydroxylase, P450coh), Journal of Biological Chemistry, 266, 16431–16435.
  • KAMINSKY, L. S., DE MORAIS, S. M. F. FALETTO, M. B., DUNBAR, D. A. and GOLDSTEIN, J. A., 1993, Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe, Molecular Pharmacology, 43, 234–239.
  • KEDZ1E, K. M., BALFOUR, C. A., ESCOBAR, G. Y., GRIMM, S. W., HE, Y.-A., PEPPERL, D. J., REGAN, J. W., STEVENS, J. C. and HALPERT, J. R., 1991, Molecular basis for a functionally unique cytochrome P450I1B1 variant, Journal of Biological Chemistry, 266, 22515–22521.
  • KOGA, H., SAGARA, Y., YAOI, T., TSUJUMURA, M. NAKAMURA, K., SEKIMIZU, K., MAKINO, R., SHIMADA H., ISHIMURA, Y., YURA, K., Co, M., IxEuuctfi, M. and HORIUCHI, T., 1993, Essential role of the Arg112 residue of cytochrome P450 for electron transfer from reduced putidaredoxin, FEBS Letters, 331, 109–113.
  • KORZEKWA, K. R. and Jos, J. P., 1993, Predicting the cytochrome P450 mediated metabolism of xenobiotics, Pharmacogenetics, 3, 1–18.
  • KRONBACH, T., KEMPER, B. and JOHNSON, E. F., 1991, A hypervariable region of P450I105 confers progesterone 21-hydroxylase activity to P450I1C1, Biochemistry, 30, 6097–6102.
  • KRONBACH, T., LARABEE, T. M. and JOHNSON, E. F., 1989, Hybrid cytochromes P-450 identify a substrate binding domain in P-450I105 and P450I1C4, Proceedings of the National Academy of Sciences, USA, 86, 8262–8265.
  • LAKE, B. G. and LEWIS, D. F. V., 1996, The CYP4 Family. In C. Ioannides (ed.), Cytochromes P450: Metabolic and Toxicological Aspects (Boca Raton: CRC Press), pp. 271–297.
  • LEWIS, D. F. V., 1994, Molecular structural studies in the rationalization of xenobiotic metabolism and toxicity, Toxicology and Ecotoxicology News, 1, 108–112.
  • LEWIS, D. F. V., 1995, Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102, P450,m3), Xenobiotka, 25, 333–366.
  • LEWIS, D. F. V., 1996, Cytochromes P450: Structure, Function and Mechanisms (London: Taylor 8z Francis).
  • LEWIS, D. F. V., 1997a, Molecular modelling in drug metabolism. In P. Jenner (ed.), Drug Metabolism: Towards the Next Millennium (in press).
  • LEWIS, D. F. V., 1997b, Molecular modelling of cytochromes P450. In H. van de Waterbeemd, B. Testa and G. Folkers (eds), Computer-Assisted Lead Finding and Optimisation: Current Tools for Medicinal Chemistry (New York/VVeinheim: Wiley/VCH), Chapter 21, pp. 333–354.
  • LEWIS, D. F. V. and LAKE, B. G., 1995, Molecular modelling of members of the P4502A subfamily: application to studies of enzyme specificity, Xenobiotica, 25, 585–598.
  • LEWIS, D. F. V. and LAKE, B. G., 1996, Molecular modelling of CYP1A subfamily members based on an alignment with CYP102: rationalization of CYP1A substrate specificity in terms of active site amino acid residues, Xenobiotica, 26, 723–753.
  • LEWIS, D. F. V. and LAKE, B. G., 1997b, Molecular modelling and quantitative structure-activity relationship, QSAR, studies on the interaction of omeprazole with cytochrome P450 isozymes, Toxicology, 125, 31–44.
  • LEWIS, D. F. V. and LAKE, B. G., 1997a, Molecular modelling of mammalian CYP2B isoforrns and their interaction with substrates, inhibitors and redox partners, Xenobiotica, 27, 443–478.
  • LEWIS, D. F. V. and LEE-ROBICHAUD, P., 1998, Molecular modelling of steroidogenic cytochromes P450 from families CYP11, CYP17, CYP19 and CYP21 based on the CYP102 crystal structure, Journal of Steroid Biochemistry and Molecular Biology (in press).
  • LEWIS, D. F. V., BIRD, M. G. and PARKE, D. V., 1997a, Molecular modelling of CYP2E1 enzymes from rat, mouse and man: an explanation for species differences in butadiene metabolism and potential carcinogenicity, and rationalization of CYP2E substrate specificity, Toxicology, 118, 93–113.
  • LEWIS, D. F. V., DICKINS, M., WEAVER, R. J., EDDERSHAW, P. J., GOLDFARB, P. S. and TARBIT, M. H., 1997b, Molecular modelling of human CYP2C subfamily enzymes CYP2C9 and CYP2C19: rationalization of substrate specificity and site-directed mutagenesis experiments in the CYP2C subfamily, Xenobiotica 28, 235–268.
  • LEWIS, D. F. V., EDDERSHAW, P. J., DICKINS, M., TARBIT, M. H. and GOLDFARB, P. S., 1998, Structural determinants of cytochrome P450 substrate specificity, binding affinity and catalytic rate, Chemico-Biological Interactions (submitted).
  • LEWIS, D. F. V., EDDERSHAW, P. J. GOLDFARB, P. S. and TARBIT, M. H., 1996, Molecular modelling of CYP3A4 from an alignment with CYP102: identification of key interactions between putative active site residues and CYP3A-specific chemicals, Xenobiotica, 26, 1067–1086.
  • LEWIS, D. F. V., EDDERSHAW, P. J., GorDrARB, P. S. and TARBIT, M. H., 1997c, Molecular modelling of cytochrome P4502D6, CYP2D6, based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism, Xenobiotica, 27, 319–340.
  • LEWIS, D. F. V., IOANNIDES, C. and PARKE, D. V., 1995b, Molecular modelling of mammalian cytochromes P450 and evaluation of chemical toxicity using COMPACT. In F. Sanz, J. Giraldo and F. Manaut (eds), QSAR and Molecular Modelling: Concepts, Computational Tools and Biological Applications (Barcelona: Prous), pp. 505–600.
  • LEWIS, D. F. V., LAKE, B. G. and PARKE, D. V., 1995a, Molecular orbital-generated QSARs in a homologous series of alkoxyresorufins and studies of their interactive docking with P450s, Xenobiotica, 25, 1355–1369.
  • LI, H. and Pormos, T. L., 1994, Structural variation in haem enzymes: a comparative analysis of peroxidase and P450 crystal structures, Structure, 2, 461–464.
  • LI, H. and Pouros, T. L., 1997, The structure of the cytochrome P450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid, Nature Structural Biology, 4, 140–146.
  • LINDBERG, R. L. P. and NEGISHI, M., 1989, Alteration of mouse cytochrome P45 °hsubstrate specificity by mutation of a single amino-acid residue, Nature, 339, 632–634.
  • LINDBERG, R. L. P., JUVONEN, R. and NEGISHI, M., 1992, Molecular characterization of the murine Coh locus: an amino acid difference at position 117 confers high and low coumarin 7-hydroxylase activity in P450coh, Pharmacogenetics, 2, 32–37.
  • LOIDA, P. J. and SUGAR, S. G., 1993, Engineering cytochrome P-450to increase the stereospecificityand coupling of aliphatic hydroxylation, Protein Engineering, 6, 207–212.
  • MACKMAN, R., TSCHIRRET -GUTH, R. A., SMITH G., HAUHURST, G. P. ELLIS, S. W., LENNARD, M. S., TUCKER, G. T., WOLF, C. R. and ORTIZ DE MONTELLANO, P. R., 1996, Active-site topologies of human CYP2D6 and its aspartate-301, glutamate, asparagine, and glycine mutants, Archives of Biochemistry and Biophysics, 331, 134–140.
  • MARTINIS, S. A., ATKINS, W. M., STAYTON, P. S. and SUGAR, S. G., 1989, A conserved residue of cytochrome P-450 is involved in haem-oxygen stability and activation, Journal of the American Chemical Society, 111, 9252–9253.
  • MATSUNAGA, E., ZEUGIN, T., ZANGER, U. M., AOYAMA, T., MEYER, U. A. and GONZALEZ, F. J., 1990, Sequence requirements for cytochrome P-4501ID1 catalytic activity, Journal of Biological Chemistry, 265, 17197–17201.
  • MODI, S., PAINE, M. J., SUTCLIFFE, M. J., LIAN, L.-Y., PRIMROSE, W. U., WOLF, C. R. and ROBERTS, G. C. K., 1997, 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: allosteric effects of NADPH-cytochrome P450 reductase, Biochemistry, 36, 4461–4470.
  • MODI, S., PRIMROSE, W. U., LIAN, L.-Y. and ROBERTS, G. C. K., 1995, Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity, Biochemical Journal, 310, 939–943.
  • MODI S., SUTCLIFFE, M. J., PRIMROSE, W. U., LIAN, L.-Y. and ROBERTS, G. C. K., 1996, The catalytic mechanism of cytochrome P450BM3 involves a 6 A movement of the bound substrate on reduction, Nature Structural Biology, 3, 414–417.
  • MUELLER, E. J., LOIDA, P. J. and SLIGAR, S. G., 1995, Twenty-five years of P450 research: mechanistic insights into oxygenase catalysis. In P. R. Ortiz de Montellano (ed.), Cytochrome P450 (New York: Plenum), pp. 83–124.
  • MUNRO, A. W., MALARKEY, K., KNIGHT, J., THOMSON, A. J., KELLY, S. M., PRICE, N. C., LINDSAY, J. G., COGGINS, J. R. and MILES, J. S., 1994, The role of tryptophan 97 of cytochrome P450 BM3 from Bacillus megaterium in catalytic function, Biochemical Journal, 303, 423–428.
  • NEBERT, D. W., 1997, Polymorphisms in drug-metabolizing enzymes: what is their clinical relevance and why do they exist?, American Journal of Human Genetics, 60, 265–271.
  • NEBERT, D. W., McKINNoN, R. A. and PUG A., 1996, Human drug-metabolizing enzyme poly-morphisms : effect on risk of toxicity and cancer, DNA and Cell Biology, 15, 273–280.
  • NEBERT, D. W., NELSON, D. R. and FEYEREISEN, R., 1989, Evolution of the cytochrome P450 genes, Xenobiotica, 19, 1149–1160.
  • NEGISHI, M., UNO, T., DARDEN, T. A., SUEYOSHI, T. and PEDERSEN, L. G., 1996b, Structural flexibility and functional versatility of mammalian P450 enzymes, FASEB Journal, 10, 683–689.
  • NEGISHI, N., IWASAKI, M., JUVONEN, R. O., SUEYOSHI, T., DARDEN, T. A. and PEDERSEN, L. G., 1996a, Structural flexibility and functional versatility of cytochrome P450 and rapid evolution, Mutation Research, 350, 43–50.
  • NELSON, D. R., 1997, World wide website at http://drnelson.utmem.edu/homepage.html
  • NELSON D. R., KOYMANS, L., KAMATAKI, T., STEGEMAN J. J., FEYEREISEN, R., WAXMAN, D. J., WATERMAN, M. R., GOTOH O., COON, M. J., ESTABROOK, R. W., GUNSALUS, I. C. and NEBERT D. W., 1996, P450 superfamily : update on new sequences, gene mapping, accession numbers and nomenclature, Pharmacogenetics, 6, 1–42.
  • OHGIYA S., KOMORI, M., OHI, H., SHIRAMATSU, K., SIHNRIKI, N. and KAMATAKI, T., 1992, Six-base deletion occurring in messages of human cytochrome P-450 in the CYP2C subfamily results in reduction of tolbutamide hydroxylase activity, Biochemistry International, 27, 1073–1081.
  • OLIVER, C. F., MODI, S., SUTCLIEHE, M. J., PRIMROSE, W. U., LIAN, L.-Y. and ROBERTS, G. C. K., 1997, A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation, Biochemistry, 36, 1567–1572.
  • OMURA, T., ISHIMURA, Y. and FLUB -KURIYAMA, Y. (eds), Cytochrome P -450, 2nd edn (Tokyo/Weinheim: Kodansha/VCH, 1993).
  • ORTIZ DE MONTELLANO, P. R. (ed.), Cytochrome P-450 (New York: Plenum, 1986).
  • ORTIZ DE MONTELLANO, P. R. (ed.), Cytochrome P450, 2nd edn (New York: Plenum, 1995).
  • PAIN, A. J., 1991, The cytochrome P450 gene superfamily, International Journal of Experimental Pathology, 72, 349–363.
  • PAULSEN, M. D., FILIPOVIC, D., SLIGAR, S. G. and ORNSTEIN, R. L., 1993, Controlling the regio-specificity and coupling of cytochrome P450cam : T185F mutant increases coupling and abolishes 3 -hydroxycamphor product, Protein Science, 2, 357–365.
  • PELKONEN, P., LANG, M. A., NEGISHI, M., WILD, C. P. and JuvoNEN, R. O., 1997, Interaction of aflatoxin Bi with cytochrome P450 2A5 and its mutants: correlation with metabolic activation and toxicity, Chemical Research in Toxicology, 10, 85–90.
  • PETERSON, J. A. and GRAHAM -LORENCE, S. E., 1995, Bacterial P450s: structural similarities and functional differences. In P. R. Ortiz de Montellano (ed.), Cytochrome P450 (New York: Plenum), pp. 151–180.
  • PETERSON, J. A., SIMPSON, E. R. and GRAHAM -LORENCE, S. E., 1995, P450 structure and function: extrapolations from the unknown. In Proceedings of the Fourth International ISSX Meeting, Seattle, 27–31 August, p. 26.
  • PORTER, T. D., 1994, Mutagenesis at a highly conserved phenylalanine in cytochrome P450 2E1 affects haem incorporation and catalytic activity, Biochemistry, 33, 5942–5946.
  • PORTER, T. D. and COON, M. J., 1991, Cytochrome P-450, Journal of Biological Chemistry, 266, 13469–13472.
  • PouLos, T. L., 1996, Ligands and electrons and haem proteins, Nature Structural Biology, 3, 401–403.
  • POULOS, T. L., CuPP -VICKERY, J. and LI, H., 1995, Structural studies on prokaryotic cytochromes P450. In P. R. Ortiz de Montellano (ed.), Cytochrome P450 (New York: Plenum), pp. 125–150.PouLos, T. L. and RAAG, R., 1992, Cytochrome P450cam : crystallography, oxygen activation and electron transfer, FASEB Journal, 6, 674–679.
  • POULOS, T. L., FINZEL, B. C. and HOWARD, A. J., 1986, Crystal structure of substrate-free Pseudomcmas patida cytochrome P-450, Biochemistry, 25, 5314–5322.
  • POULOS, T. L., FINZEL, B. C. and HOWARD, A. J., 1987, High-resolution crystal structure of cytochrome P450c„,, Journal of Molecular Biology, 195, 687–700.
  • PRICE-EVANS, D. A., 1993, Genetic Factors in Drug Therapy (Cambridge: Cambridge University Press).
  • RAMARAO, M. K., STRAUB, P. and KEMPER, B., 1995, Identification by in vitro mutagenesis of the interaction of two segments of C2MstC1, a chimera of cytochromes P450 2C2 and P450 2C1, Journal of Biological Chemistry, 270, 1873–1880.
  • RAVICHANDRAN, K. G. BODDUPALLI, S. S., HASEMANN, C. A., PETERSON, J. A. and DEISENHOFER, J., 1993, Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450s, Science, 261, 731–736.
  • RENDIC, S. and DI CARLO, F. J., 1997, Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors, Drug Metabolism Reviews, 29, 413–580.
  • RICHARDSON, T. H. and JOHNSON, E. F., 1994, Alterations of the regiospecificity of progesterone metabolism by the mutagenesis of two key amino acid residues in rabbit cytochrome P450 2C3v, Journal of Biological Chemistry, 269, 23927–23943.
  • RUAN, K.-H., MILFELD, K., KALMACZ, R. J. and Wu, K. K., 1994, Comparison of the construction of a 3-D model for human thromboxane synthase using P450cam and BM-3 as templates: implications for the substrate binding pocket, Protein Engineering, 7, 1345–1351.
  • RUCKPAUL, K. and REIN, H. (eds), 1984, Cytochrome P-450 (Berlin: Akademic).
  • SATO, R. and OMURA, T. (eds), 1976, Cytochrome P-450 (New York: Academic).
  • SCHENKMAN J. B. and GR1EM, H. (eds), 1993, Cytochrome P450 (Berlin: Springer).
  • SCHENKMAN J. B. and KUPFER, D. (eds), 1982, Hepatic Cytochrome P-450 Mono-oxygenase System (Oxford: Pergamon).
  • SCHENKMAN J. B., THUMMEL, K. E. and FAVREAU, L. V., 1989, Physiological and pathophysiological alterations in rat hepatic cytochromes P450, Drug Metabolism Reviews, 20, 557–584.
  • SHIMADA, T., YAMAZAKI, H., MIMURA, M., INUI, Y. and GUENGERICH, F. P., 1994, Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians, Journal of Pharmacology and Experimental Therapeutics, 270, 414–423.
  • SLIGAR, S. G., FILIPOVIC, D. and STAYTON, P. S., 1991, Mutagenesis of cytochromes P450and 135,Methods in Enzymology, 206, 31–49.
  • SMITH, D. A., ABEL, S. M., HYLAND, R. and JoNEs, B. C., 1997a, Cytochrome P450s: selectivity and measurement in vivo, Xenobiotica (in press).
  • SMITH, D. A., ACKLAND, M. J. and JoNEs, B. C., 1997b, Properties of cytochrome P450 isoenzymes and their substrates. Part 1: active site characteristics, Drug Discovery Today, 2, 406–414.
  • SMITH, D. A. and JoNEs, B. C., 1992, Speculations on the substrate structure-activity relationship, SSAR, of cytochrome P450 enzymes, Biochemical Pharmacology, 44, 2089–2098.
  • SPATZENEGGER, M. and JAEGER, W., 1995, Clinical importance of hepatic cytochrome P450 in drug metabolism, Drug metabolism Reviews, 27, 397–417.
  • STAYTON, P. S. and SLIGAR, S. G., 1990, The cytochrome P-450binding surface as defined by site-directed mutagenesis and electrostatic modelling, Biochemistry, 29, 7381–7386.
  • STAYTON, P. S., POULOS, T. L. and SLIGAR, S. G., 1989, Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association: a proposed molecular model for a cytochrome P-450electron transfer complex, Biochemistry, 28, 8201–8205.
  • STRAUB, P., JOHNSON, E. F. and KEMPER, B., 1993b, Hydrophobic side chain requirements for lauric acid and progesterone hydroxylation at amino acid 113 in cytochrome P450 2C2, a potential determinant of substrate specificity, Archives of Biochemistry and Biophysics, 306, 521–527.
  • STRAUB, P., LLOYD, M., JOHNSON, E. F. and KEMPER, B., 1993a, Cassette mutagenesis of a potential substrate recognition region of cytochrome P450 2C2, Journal of Biological Chemistry, 268, 21997–22003.
  • SULLIVAN -KLOSE, T. H., GHANAYEM, B. I., BELL, D. A., ZHANG, Z.-Y., KAMINSKY, L. S., SHENF1ELD G. M., MINERS, J. O., BIRICETT, D. J. and GOLDSTEIN, J. A., 1996, The role of the CYP2C9- Leuallelic variant in the tolbutamide polymorphism, Pharmacogenetics, 6, 341–349.
  • SZKLARZ, G. D., HE, Y. A. and HALPERT, J. R., 1995, Site-directed mutagenesis as a tool for molecular modelling of cytochrome P4502B1, Biochemistry, 34, 14312–14322.
  • SZKLARZ, G. D., HE, Y. Q., KEDZIE, K. M., HALPERT, J. R. and BURNETT, V. L., 1996, Elucidation of amino acid residues critical for unique activities of rabbit cytochrome P450 2B5 using hybrid enzymes and reciprocal site-directed mutagenesis with rabbit P450 2B4, Archives of Biochemistry and Biophysics, 327, 308–318.
  • TAN, Y., WHITE, S. P., PARANAWITHANA, S. R. and YANG, C. S., 1997, A hypothetical model for the active site of human cytochrome P4502E1, Xenobiotka, 27, 287–299.
  • TOMLINSON, E. S., LEWIS, D. F. V., MAGGS, J. L., PARK, B. K. and BACK, D. J., 1997, In vitro metabolism of side-chain cleaved dexamethasone, 9, F-A, is CYP3A4 mediated: rationalization of CYP3A4 and CYP17, 17, 20 lyase, involvement in dexamethasone metabolism in vitro based on molecular modelling studies, Biochemical Pharmacology, 54, 605–611.
  • TUCK, S. F., GRAHAM -LORENCE, S., PETERSON, J. A. and ORTIZ DE MONTELLANO, P. R., 1993, Active sites of the cytochrome P450„,, CYP101, F87W and F87A mutants, Journal of Biological Chemistry, 268, 269–275.
  • TUCK, S. F., PETERSON, J. A. and ORTIZ DE MONT'ELLANO, P. R., 1992, Active site topologies of bacterial cytochromes P450101 (P450ca. ), P450108 (P450.rp ), and P450102 (P450,33), Journal of Biological Chemistry, 267, 5614–5620.
  • UNNO, M., SHIMADA, H., TOBA, Y MAKINO, R. and ISHIMURA, Y., 1996, Role of argil' of cytochrome P450 in the electron transfer from reduced putidaredoxin, Journal of Biological Chemistry, 271, 17869–17874.
  • VAZ, A. D. N., PERNECKY, S. J., RANER, G. M. and CooN, M. J., 1996, Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4, Proceedings of the National Academy of Sciences, USA, 93, 4644–4648.
  • VERMEULEN, N. P. E., 1996, Role of metabolism in chemical toxicity. In C. Ioannides (ed.), Cytochromes P450: Metabolic and Toxicological Aspects (Boca Raton: CRC Press), pp. 29–53.
  • VERONESE M. E., DOECKE, C. J., MACKENZIE, P. I., McMANus, M. E., MINERS, J. O., Rs, D. L. P., GASSER, R., MEYER, U. A. and BIRKETT, D. J., 1993, Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily, Biochemical Journal 289, 533–538.
  • WACHENFELDT, C. V. and JOHNSON, E. F., 1995, Structures of eukaryotic cytochrome P450 enzymes. In P. R. Ortiz de Montellano (ed.), Cytochrome P450 (New York: Plenum), pp. 183–223.
  • WATKINS, P. B., 1990, Role of cytochromes P450 in drug metabolism and hepatotoxicity, Seminars in Liver Disease, 10, 235–250.
  • WISEMAN, H. and LEWIS, D. F. V., 1996, The metabolism of tamoxifen by human cytochromes P450 is rationalized by molecular modelling of the enzyme—substrate interactions : potential importance to its proposed anti-carcinogenic/carcinogenic actions, Carcinogenesis, 17, 1357–1360.
  • WRIGHTON, S. A. and STEVENS, J. C., 1992, The human hepatic cytochromes P450 involved in drug metabolism, Critical Reviews in Toxicology, 22, 1–21.
  • YAMANO, S., TATSUNO, J. and GONZALEZ, F. J., 1990, The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes, Biochemistry, 29, 1322–1329.
  • YAMAZAKI, S., SATO, K., SUHARA, K., SAKAGUCHI, M., MIHARA, K. and OMURA, T., 1993, Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s, Journal of Biochemistry, 114, 652–657.
  • YASUKOCHI, T., OKADA, O., HARA, T., SAGARA, Y., SEKIMIZU, K. and HORIUCHI, T., 1994, Putative functions of phenylalanine-350 of Pseudomonas putida cytochrome P-450c3., Biochimka et Biophyska Acta, 1204, 84–90.
  • YEOM, H. and SUGAR, S. G., 1997, Oxygen activation by cytochrome P450,33: effects of mutating an active site acidic residue, Archives of Biochemistry and Biophysics, 337, 209–216.
  • YEOM, H., SUGAR, S. G., LI, H., POULOS, T. L. and FuLco, A. J., 1995, The role of Thr 268 in oxygen activation of cytochrome P450., 3, Biochemistry, 34, 14733–14740.
  • YOSHIKAWA, K., NOGUTI, T., TSUJIMURA, M., KOGA, H., YASUKOCHI, T., HORIUCHI, T. and Go, M., 1992, Hydrogen bond network of cytochrome P-450 c,. : a network connecting the haem group with helix K, Biochimica et Biophysica Acta, 1122, 41–44.
  • ZIMNIAK, P. and WAXMAN, D. J., 1993, Liver cytochrome P450 metabolism of endogenous steroid hormones, bile acids and fatty acids. In J. B. Schenkman and H. Griem (eds), Cytochrome P450 (Berlin: Springer), pp. 123–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.