12
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Potential of genetic translational research in gastroenterology

&
Pages 38-44 | Published online: 08 Jul 2009

References

  • International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001;409: 860–921.
  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science 2001; 291:1304–51.
  • Altschuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, et al. A SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 2000; 407: 513–6.
  • International SNP Map Working Group. A map of human sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001;409:928–33.
  • Fan J-B, Chen X, Halushka MK, Berno A, Huang X, Ryder T, et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res 2000;10:853–60.
  • Rodi CP, Darnhofer-Patel B, Stanssen P, Zabeau M, Van den Boom D. A strategy for the rapid discovery of disease markers using the MassArray system. Biotechniques 2002;32:S62–9.
  • Oliphant A, Barker dL, Stuelpnagel JR, Chee MS. BeadArray technology: enabling an accurate cost-effective approach to high-throughput genotyping. Biotechniques 2002;32:S56–61.
  • Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003;348:538–49.
  • Wang DG, Fan J-B, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of singlenucleotide polymorphisms in the human genome. Science 1998; 280:1077–82.
  • Hearne CM, Ghosh S, Todd JA. Microsatellites for linkage analysis of complex traits. Trends Genet 1992;8:288–94.
  • Slatkin M. Linkage disequilibrium in growing and stable populations. Genetics 1994;137:331–6.
  • Weiss KM, Terwilliger JD. How many diseases does it take to map a gene with SNPs? Nature Genet 2000;26:151–7.
  • Altmüller J, Palmer LJ, Fischer G, Scherb H, Wjst M. Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet 2001;69:936–50.
  • Cardon LR, Bell JI. Association study designs for complex diseases. Nature Rev Genet 2001;2:91–9.
  • Syvänen A-C. Assessing genetic variation: genotyping single nucleotide polymorphisms. Nature Rev Genet 2001;2:930–42.
  • Kwok P-Y. Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2001;2:235–58.
  • Norton N, Williams NM, Williams HJ, Spurlock G, Kirov G, Morris DW, et al. Universal, robust, highly quantitative SNP allele frequency measurement in DNA pools. Hum Genet 2002; 110:471–8.
  • Livak KJ. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 1999;14:143–9.
  • Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nature Biotechnol 1998;16:49–53.
  • Bell PA, Chaturvedi S, Gelfand CA, Huang CY, Kochersperger M, Kopla R, et al. SNPstream UHT: Ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques 2002;32:S70–7.
  • Lindroos K, Sigurdsson S, Johansson K, Rönnblom L, Syvänen A-C. Multiplex SNP genotyping in pooled DNA samples by a four-colour microarray system. Nucleic Acids Res 2002;30:e70.
  • Raychaudhuri S, Sutphin PD, Chang JT, Altman RB. Basic microarray analysis: grouping and feature reduction. Trends Biotechnol 2001;19:189–93.
  • Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology 2003;124:521–36.
  • Ohmen JD, Yang HY, Yamamoto KK, Zhao HY, Ma Y, Bentley LG, et al. Susceptibility locus for inflammatory bowel disease on chromosome 16 has a role in Crohn’s disease, but not in ulcerative colitis. Hum Mol Genet 1996;5:1679–83.
  • Brant SR, Fu Y, Fields CT, Baltazar R, Ravenhill G, Pickles MR, et al. American families with Crohn’s disease have strong evidence for linkage to chromosome 16 but not chromosome 12. Gastroenterology 1998;115:1056–61.
  • Cavanaugh JA, Callen DF, Wilson SR, Stanford PM, Sraml ME, Gorska M, et al. Analysis of Australian Crohn’s disease pedigrees refines the localization for susceptibility to inflammatory bowel disease on chromosome 16. Ann Hum Genet 1998; 62: 291–8.
  • Cho JH, Nicolae DL, Gold LH, Fields CT, LaBuda MC, Rohal PM, et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosome 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc Natl Acad Sci USA 1998;95:7502–7.
  • Curran ME, Lau KF, Hampe J, Schreiber S, Bridger S, Macpherson AJS, et al. Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosomes 12 and 16. Gastroenterology 1998;115:1066–71.
  • Annese V, Latiano A, Bovio P, Forabosco P, Piepoli A, Lombardi G, et al. Genetic analysis in Italian families with inflammatory bowel disease supports linkage to the IBD1 locus: a GISC study. Eur J Hum Genet 1999;7:567–73.
  • IBD International Genetics Consortium. International collaboration provides convincing linkage replication in complex disease through analysis of a large pooled data set: Crohn disease and chromosome 16. Am J Hum Genet 2001;68: 1165–71.
  • Duerr RH, Barmada MM, Zhang L, Davis S, Preston RA, Chensny LJ, et al. Linkage and association between inflammatory bowel disease and a locus on chromosome 12. Am J Hum Genet 1998;63:95–100.
  • Hampe J, Schreiber S, Shaw SH, Lau KF, Bridger S, Macpherson AJS, et al. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am J Hum Genet 1999;64:808–16.
  • Yang H, Plevy SE, Taylor K, Tyan D, Fischel-Ghodsian N, McElree C, et al. Linkage of Crohn’s disease to the major histocompatibility complex region is detected by multiple nonparametric analyses. Gut 1999;44:519–26.
  • Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J Biol Chem 2001;276: 4812–8.
  • Inohara N, Ogura Y, Chen FF, Muto A, Nunez G. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J Biol Chem 2001;276: 2551–4.
  • Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B in inflammatory bowel disease. Gut 1998;42:477–84.
  • Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 2001;357:1925–8.
  • Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411:599–603.
  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001;411:603–6.
  • Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJ, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 2002;122:867–74.
  • Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR, et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 2002; 122: 854–66.
  • Bonen DK, Ogura Y, Nicolae DL, Inohara N, Saab L, Tsuyoshi T, et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 2003;124:140–7.
  • Chiba K, Kobayashi K, Manabe K, Tani M, Kamataki T, Ishizaki T. Oxidative metabolism of omeprazole in human liver microsomes: cosegregation with S-mephenytoin 4′-hydroxylation. J Pharmacol Exp Ther 1993;266:52–9.
  • Pichard L, Curi-Pedrosa R, Bonfils C, Jacqz-Aigrain Domergue J, Joyeux H. Oxidative metabolism of lansoprazole by human liver cytochromes P450. Mol Pharmacol 1995;47:410–8.
  • Ieiri I, Kubota T, Urae A, Kimura M, Wada Y, Mamiya K, et al. Pharmacokinetics of omeprazole (a substrate of CYP2C19) and comparison with two mutant alleles, C gamma P2C19m1 in exon 5 and C gamma P2C19m2 in exon 4, in Japanese subjects. Clin Pharmacol Ther 1996;59:647–53.
  • Sakai T, Aoyama N, Kita T, Sakaeda T, Nishiguchi K, Nishitora Y, et al. CYP2C19 genotype and pharmacokinetics of three proton-pump inhibitors in healthy subjects. Pharm Res 2001;18: 721–7.
  • De Morais SMF, Wilkinson GR, Blaisdell J, Nakamura K, Goldstein JA. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994;269:15419–22.
  • De Morais SMF, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA. Identification of a new genetic defect responsible for the polymorphism of S-mephenytoin metabolism in Japanese. Mol Pharmacol 1994;46:594–8.
  • Nakamura K, Goto F, Ray WA, McAllister CB, Jacqz E, Wilkinson GR, et al. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian population. Clin Pharmacol Ther 1985;38:402–8.
  • Bertilsson L, Lou Y-Q, Du YL, Liu Y, Kuang TY, Liao XM, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 1992;51:388–97.
  • Bertilsson L, Kalow W. Why are diazepam metabolism and polymorphic S-mephenytoin hydroxylation associated with each other in white and Korean populations but not in Chinese population. Clin Pharmacol Ther 1993;53:608–10.
  • Sagar M, Tybring G, Dahl M-L, Bertilsson L, Seensalu R. Effects of omeprazole on intragastric pH and plasma gastrin levels are dependent on the CYP2C19 polymorphism. Gastroenterology 2000;119: 670–6.
  • Furuta T, Shirai N, Xiao F, Ohashi K, Ishizaki T. Effect of highdose lansoprazole on intragastric pH in subjects who are homozygous extensive metabolizers of cytochrome P4502C19. Clin Pharmacol Ther 2001;70: 484–92.
  • Furuta T, Shirai N, Watanabe F, Honda S, Takeuchi K, Iida T, et al. Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin Pharmacol Ther 2002;72:453–60.
  • Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D, et al. Allelic variation of human serotonin transporter gene expression. JNeurochem 1996;66:2621–4.
  • Mortensen OV, Thomassen M, Larsen MB, Whittemore SR, Wiborg O. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells. Mol Brain Res 1999;68:141–8.
  • Camilleri M, Atanasova E, Carlson PJ, Ahmad U, Kim HJ, Viramontes BE, et al. Serotonin-transporter polymorphism pharmacogenetics in diarrhea-predominant irritable bowel syndrome. Gastroenterology 2002;123:425–32.
  • Agrawal D, Chen T, Irby R, Quackenbush J, Chambers AF, Szabo M, et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 2002;94:513–21.
  • Hugot JP, Laurent-Puig P, Gower-Rousseau C, Olson JM, Lee JC, Beaugerie L, et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996;379:821–3.
  • Satsangi J, Parkes M, Louis E, Hashimoto L, Kato N, Welsh K, et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996;14:199–202.
  • Hampe J, Shaw SH, Saiz R, Leysens N, Lantermann A, Mascheretti S, et al. Linkage of inflammatory bowel disease to human chromosome 6p. Am J Hum Genet 1999;65:1647–55.
  • Ma Y, Ohmen JD, Li Z, Bentley LG, McElree C, Pressman S, et al. A genome-wide search identifies potential new susceptibility loci for Crohn’s disease. Inflamm Bowel Dis 1999;5:271–8.
  • Duerr RH, Barmada M, Zhang L, Pfűtzer R, Weeks DE. High-density genome scan in Crohn’s disease shows confirmed linkage to chromosome 14q11–12. Am J Hum Genet 2000;66: 1857–62.
  • Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, McLeod RS, Griffiths AM, et al. Genome-wide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000;66:1863–70.
  • Chang M, Dahl ML, Tybring G, Götharsson E, Bertilsson L. Use of omeprazole as probe drug for CYP2C19 phenotype in Swedish Caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype. Pharmacogenetics 1995; 5: 358–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.