66
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Cellular Response of Limbal Stem Cells on Poly (Hydroxybuthyrate-co-Hydroxyvalerate) Porous Scaffolds for Ocular Surface Bioengineering

, &
Pages 815-821 | Received 27 Oct 2014, Accepted 25 Jan 2015, Published online: 21 May 2015

References

  • Klyce, S. D.; Beuerman, R. W. Structure and function of the cornea. In: The Cornea, Kaufman, H. E. Barron, B. A. McDonald, M. B. Waltman, S. R. editors. Churchill Livingstone: New York, 1988; pp. 3–15.
  • Ang, L. P. K.; Tan, D. T. H.; Beuerman, R. W.; Lavker, R. M. Ocular surface epithelial stem cells: implications for ocular surface homeostasis. In: Dry Eye and Ocular Surface Disorders, Pflugfelder, S. C. Beuerman, R. W. Stern, M. E. editors. Marcel Dekker: New York, 2004; pp. 225–246.
  • Kenyon, K. R.; Tseng, S. C. Limbal autograft transplantation for ocular surface disorders. Ophthalmology 1989, 96, 709.
  • Kenyon, K. R. Limbal autograft transplantation for chemical and thermal burns. Dev. Ophthalmol. 1989, 18, 53.
  • Sangwan, V. S. Limbal stem cells in health and disease. Biosci. Rep. 2001, 21, 385.
  • Tsai, R. J.; Li, L. M.; Chen, J. K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 2000, 343, 86.
  • Tseng, S. C.; Tsai, R. J. Limbal transplantation for ocular surface reconstruction – a review. Fortschr. Ophthalmol. 1991, 88, 236.
  • Shimazaki, J.; Yang, H. Y.; Tsubota, K. Limbal autograft transplantation for recurrent and advanced pterygia. Ophthal. Surg. Lasers 1996, 27, 917.
  • Sykova, E.; Jendelova, P.; Urdzikova, L.; Lesny, P.; Hejcl, A. Bone marrow stem cells and polymer hydrogels—two strategies for spinal cord injury repair. Cell Mol. Neurobiol. 2006, 25, 1113.
  • Dubios, G.; Segers, V. F.; Bellamy, V.; Sabbah, L.; Peyr ard, S.; Bruneval, P.; Hagege, A. A.; Lee, R. T.; Menasche, P. Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. J. Biomed. Mater. Res. B: Appl. Biomater. 2008, 87, 222.
  • Rama, P.; Bonini, S.; Lambiase, A.; Golisano, O.; Paterna, P.; De Luca, M.; Pellegrini, G. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem deficiency. Transplantation 2001, 72, 1478.
  • Schwab, I. R.; Johnson, N. T.; Harkim, D. G. Inherent risks associated with manufacture of bioengineered ocular surface tissue. Arch. Ophthalmol. 2006, 124, 1734.
  • Tsai, R. J.; Li, L. M.; Chen, J. K. Reconstruction of dam aged cornea by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 2000, 343, 86.
  • Choi, S. M.; Singh, D.; Kumar, A.; Oh, T. H.; Cho, Y.; Woo, H.; Sung, S. Porous three-dimensional PVA = gelatin sponge for skin tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 384.
  • Zhang, W.; Wang, P.; Wang, Y.; Fu, W.; Pua, X.; Zhang, F.; Hua, D.; Ma, S.; Chen, Z.; Wang, M. Development of a cross-linked polysaccharide of Ligusticum wallichii – squid skin collagen scaffold fabrication; and property studies for tissue-engineering applications. Int. J. Polym. Mater. Polym. Biomater. 2013, 63, 65.
  • Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of selfassembling materials. Proc. Natl. Acad. Sci. USA 2002, 99, 5133.
  • Fong, H.; Weidong, L.; Wang, C. S.; Vaia, R. A. Generation of electrospun fibers of nylon 6; and nylon 6-montmorillonite nanocomposite. Polymer 2002, 43, 775.
  • Williams, S. F.; Martin, D. P.; Horowitz, D. M.; Peoples, O. P. PHA applications: addressing the price performance issue: I. Tissue engineering. Int. J. Biol. Macromol. 1999, 25, 111.
  • Liu, J.; Zhao, B.; Zhang, Y.; Lin, Y.; Hu, P.; Ye, C. PHBV; and predifferentiated human adipose-derived stem cells for cartilage tissue engineering. J. Biomed. Mater. Res. A 2010, 94, 603.
  • Biazar, E.; Zhang, Z.; Heidari, S. Cellular orientation on micro-patterned biocompatible PHBV film. J. Paramed. Sci. 2010, 1, 74.
  • Rezaei-Tavirani, M.; Biazar, E.; Ai, J.; Heidari, S.; Asefnejad, A. Fabrication of collagen-coated Poly (beta-hydroxy butyrate-cobeta-hydroxyvalerate) nanofiber by chemical; and physical methods. Orient. J. Chem. 2011, 27, 385.
  • Ai, J.; Heidari, S. K.; Ghorbani, F.; Ejazi, F.; Biazar, E.; Asefnejad, A.; Pourshamsian, K.; Montazeri, M. Fabrication of coated-collagen electrospun PHBV nanofiber film by plasma method; and its cellular study. J. Nanomater. 2011, 2011, 1.
  • Biazar, E.; Heidari, S. K. Chitosan–Cross-linked nanofibrous PHBV nerve guide for rat for sciatic nerve regeneration across a defect bridge. ASAIO J. 2013, 59, 651.
  • Sahebalzamani, M.; Biazar, E.; Shahrezaei, M.; Hosseinkazemi, H.; Rahiminavaie, H. Surface modification of PHBV nanofibrous mat by laminin protein and its cellular study. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 149.
  • Montazeri, M.; Rashidi, N.; Biazar, E.; Rad, H.; Sahebalzamani, M.; Heidari, S.; Majdi, A. Compatibility of cardiac muscle cells on coated-gelatin electro-spun polyhydroxybutyrate-valerate nano fibrous film. Biosci. Biotech. Res. ASIA 2011, 8, 515.
  • Keshel, S. H.; Soleimani, M.; Tavirani, M. R.; Ebrahimi, M.; Raeisossadati, R.; Yasaei, H. Evaluation of unrestricted somatic stem cells as a feeder layer to support undifferentiated embryonic stem cells. Mol. Reprod. Dev. 2012, 79, 709.
  • Baradaran-Rafii, A.; Raeisossadati, R.; Keshel, S. H. Ex vivo culture of limbal stem cells:Unrestricted somatic stem cell from umbilical cord blood serving as a limbal stem cell feeder layer. Cornea 2014, in press.
  • Biazar, E.; Khorasani, M. T.; Daliri, M. Cell adhesion and surface properties of polystyrene surfaces grafted with poly (N-Isopropylacrylamide). Chin. J. Polym. Sci. 2013, 31, 1509.
  • Zeinali, R.; Biazar, E.; Heidari, S.; Rezaei, M.; Asadipour, K. Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J. 2014, 60, 106.
  • Fatimah, S. S.; Ng, S. L.; Chua, K. H.; Hayati, A. R.; Tan, A. E.; Chin Tan, G. C. Value of human amniotic epithelial cells in tissue engineering for cornea. Hum. Cell 2010, 23, 141.
  • Bouchard, C. S.; Thomas, J. Amniotic membrane transplantation in the management of severe ocular surface disease: indications and outcomes. Ocul. Surf. 2004, 2, 201.
  • Maharajan, V. S.; Shanmuganathan, V.; Currie, A.; Hopkinson, A.; Powell-Richards, A.; Dua, H. S. Amniotic membrane transplantation for ocular surface reconstruction: indications and outcomes. Clin. Exp. Ophthalmol. 2007, 35, 140.
  • Selvam, S.; Thomas, P. B.; Yiu, S. C. Tissue engineering: current and future approaches to ocular surface reconstruction. Ocul. Surf. 2006, 4, 120.
  • Alaminos, M.; Del Carmen Sánchez-Quevedo, M.; Muñoz-Avila, J. I. Construction of a complete rabbit cornea substitute using a fibrin–agarose scaffold. Invest. Ophthalmol. Vis. Sci. 2006, 47, 3311.
  • Wray, L. S.; Orwin, E. J. Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Eng. Part A 2009, 15, 1463.
  • Dua, H. S.; Azuara-Blanco, A. Limbal stem cells of the corneal epithelium. Surv. Ophthalmol. 2000, 44, 415.
  • Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Yamamoto, K.; Adachi, E.; Nagai, S.; Kikuchi, A.; Maeda, N.; Watanabe, H.; Okano, T.; Tano, Y. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 2004, 351, 1187.
  • Galal, A.; Perez-Santonja, J. J.; Rodriguez-Prats, J. L. Human anterior lens capsule as a biologic substrate for the ex vivo expansion of limbal stem cells in ocular surface reconstruction. Cornea 2007, 26, 473.
  • Yeh, L. K.; Chen, Y.; Chiu, C.; Hu, F.; Young, T.; Wang, I. The phenotype of bovine corneal epithelial cells on chitosan membrane. J. Biomed. Mater. Res. A 2009, 90, 18.
  • Sudha, B.; Madhavan, H. N.; Sitalakshmi, G.; Malathi, J.; Krishnakumar, S.; Mori, Y.; Yoshioka, H.; Abraham, S. Cultivation of human corneal limbal stem cells in Mebiol gel - A thermoreversible gelation polymer. Indian J. Med. Res. 2006, 124, 655.
  • Low, S. P.; Voelcker, N.; Canham, L.; Williams, K. The biocompatibility of porous silicon in tissues of the eye. Biomaterials 2009, 30, 2873.
  • Zhou, S.; Schuetz, J. D.; Bunting, K. D.; Colapietro, A. M.; Sampath, J.; Morris, J. J.; Lagutina, I.; Grosveld, G. C.; Osawa, M.; Nakauchi, H.; Sorrentino, B. P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 2001, 7, 1028.
  • de Paiva, C. S.; Chen, Z.; Corrales, R. M.; Pflugfelder, S. C.; Li, D. Q. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 2005, 23, 63.
  • Schermer, A.; Galvin, S.; Sun, T. T. Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J. Cell Biol. 1986, 103, 49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.