385
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Development of poly (L-lactide-co-caprolactone) multichannel nerve conduit with aligned electrospun nanofibers for Schwann cell proliferation

, , , , &
Pages 323-329 | Received 18 May 2015, Accepted 20 Sep 2015, Published online: 02 Feb 2016

References

  • Yao, L.; de Ruiter, G. C.; Wang, H.; Knight, A. M.; Spinner, R. J.; Yaszemski, M. J.; Windebank, A. J.; Pandit, A. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials 2010, 31, 5789–5797.
  • Schmidt, C. E.; Leach, J. B. Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 2003, 5, 293.
  • Gu, X.; Ding, F.; Yang, Y.; Liu, J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog. Neurobiol. 2010, 93, 204–230.
  • Daly, W.; Yao, L.; Zeugolis, D.; Windebank, A.; Pandit, A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap; and enhancing functional recovery. J. R. Soc. Interface 2014, 9, 202–221.
  • Koh, H. S.; Yong, T.; Teo, W. E.; Chan, C. K.; Puhaindran, M. E.; Tan, T. C.; Lim, A.; Lim, B. H.; Ramakrishna, S. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J. Neural Eng. 2010, 7, 046003.
  • Zhang, K.; Wang, H.; Huang, C.; Su, Y.; Mo, X.; Ikada, Y. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. J. Biomed. Mater. Res. A 2010, 93, 984–993.
  • Biazar, E.; Khorasani, M. T.; Montazeri, N.; Pourshamsian, K.; Daliri, M.; Rezaei, M.; Jabarvand, M.; Khoshzaban, A.; Heidari, S.; Jafarpour, M. Types of neural conduit and using nanotechnology for peripheral nerve reconstruction. Int. J. Nanomed. 2010, 5, 839–852.
  • Chen, Z. G.; Mo, X. M.; He, C. L.; Wang, H. S. Carbohydr. Polym. 2008, 72, 410–418.
  • Mauck, R. L.; Baker, B. M.; Nerurkar, N. L.; Burdick, J. A.; Li, W. J.; Tuan, R. S.; Elliott, D. M. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng. Part B Rev. 2009, 15, 171–193.
  • Wang, C. Y.; Zhang, K. H.; Fan, C. Y.; Mo, X. M.; Ruan, H. J.; Li, F. F. Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater, 2011, 7, 634–643.
  • Wang, H. B.; Mullins, M. E.; Cregg, J. M.; McCarthy, C. W.; Gilbert, R. J. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration Acta Biomater. 2010, 6, 2970–2978.
  • Kim, Y. T.; Haftel, V. K.; Kumar, S.; Bellamkonda, R. V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 2008, 29, 3117–3127.
  • Chew, S. Y.; Mi, R.; Hoke, A.; Leong, K. W. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv. Funct. Mater. 2007, 17, 1288–1296.
  • Jha, B. S.; Colello, R. J.; Bowman, J. R.; Sell, S. A.; Lee, K. D.; Bigbee, J. W.; Bowlin, G. L.; Chow, W. N.; Mathern, B. E.; Simpson, D. G. Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater. 2011, 7, 203–215.
  • Kehoe, S.; Zhang, X. F.; Boyd, D. FDA approved guidance conduit; and wraps for peripheral nerve injury: a review of materials; and efficacy. Injury 2012, 43, 553–572.
  • Jeffries, E. M.; Wang, Y. Biomimetic micropatterned multi-channel nerve conduit by templated electrospinning. Biotechnol. Bioeng. 2012, 109, 1571–1582.
  • Yao, L.; Billiar, K. L.; Windebank, A. J.; Pandit, A. Multichanneled collagen conduit for peripheral nerve regeneration: design, fabrication, and characterization. Tissue Eng. Part C Methods 2010, 16, 1585.
  • Cao, H.; McHugh, K.; Chew, S. Y.; Anderson, J. M. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J. Biomed. Mater. Res. A 2009, 93, 1151–1159.
  • Li, G. N.; Hoffman-Kim, D. Tissue-engineered platforms of axon guidance. Tissue Eng. Part B Rev. 2008. 14, 33.
  • Campbell, W. W. Evaluation and management of peripheral nerve injury. Clin. Neurophysiol. 2008, 119, 1951–1965.
  • Agarwal, S.; Wendorff, J. H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49, 5603–5621.
  • Dinis, T. M.; Elia, R.; Vidal, G.; Dermigny, Q.; Denoeud, C.; Kaplan, D. L.; Egles, C.; Marin, F. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J. Mech. Behav. Biomed. Mater. 2015, 41, 43–55.
  • Clements, I. P.; Kim, Y. T.; English, A. W.; Lu, X.; Chung, A.; Bellamkonda, R. V. Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 2009, 30, 3834–3846.
  • Tran, R. T.; Choy, W. M.; Cao, H.; Qattan, I.; Chiao, J. C.; Ip, W. Y.; Yeung, K. W. K.; Yang, J. Fabrication and characterization of biomimetic multi channeled cross linked-urethane-doped polyester tissue engineered nerve guides. J. Biomed. Mater. Res. A 2014, 102, 2793–2804.
  • George, P. M.; Saigal, R.; Lawlor, M. W.; Moore, M. J.; LaVan, D. A.; Marini, R. P.; Selig, M.; Makhni, M.; Burdick, J. A.; Langer, R.; et al. Three-dimensional conductive constructs for nerve regeneration. J. Biomed. Mater. Res. A 2009, 91, 519–27.
  • Stokols, S.; Sakamoto, J.; Breckon, C.; Holt, T.; Weiss, J.; Tuszynski, M. H. Templated agarose scaffolds support linear axonal regeneration. Tissue Eng. 2006, 12, 2777–2787.
  • Flynn, L.; Dalton, P. D.; Shoichet, M. S. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 2003, 24, 4265–4272.
  • Bozkurt, A.; Brook, G. A.; Moellers, S.; Lassner, F.; Sellhaus, B.; Weis, J.; Woeltje, M.; Tank, J.; Beckmann, C.; Fuchs, P. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel threedimensional collagen matrix. Tissue Eng. 2007, 13, 2971–2979.
  • Hu, X.; Huang, J.; Ye, Z.; Xia, L.; Li, M.; Lv, B.; Shen, X.; Luo, Z. A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration. Tissue Eng. Part A 2009, 15, 3297–3308.
  • Madaghiele, M.; Sannino, A.; Yannas, I. V.; Spector, M. Collagen-based matrices with axially oriented pores. J. Biomed. Mater. Res. A 2008, 85, 757–767.
  • Stokols, S.; Tuszynski, M. H. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 2004, 25, 5839–5846.
  • Chen, Y. Y.; McDonald, D.; Cheng, C.; Magnowski, B.; Durand, J.; Zochodne, D. W. Axon and Schwann cell partnership during nerve regrowth. J. Neuropathol. Exp. Neurol. 2005, 64, 613–622.
  • Brushart, T. M. Nerve Repair, 1st edn.; Oxford University Press, New York, 2011.
  • Kettenmann, H.; Ransom, B. R. Neuroglia, 2nd edn.; Oxford University Press, New York, 2005.
  • Zhang, J.; Qiu, K.; Sun, B.; Fang, J.; Zhang, K.; El-Hamshary, H.; Al-Deyab, S. S.; Mo, X. The aligned core–sheath nanofibers with electrical conductivity for neural tissue engineering. J. Mater. Chem. B 2014, 2, 7945–7954.
  • Xie, J.; MacEwan, M. R.; Willerth, S. M.; Li, X.; Moran, D. W.; Sakiyama-Elbert, S. E.; Xia, Y. Adv. Funct. Mater. 2009, 19, 2313–2318.
  • Kijenska, E.; Prabhakaran, M. P.; Swieszkowski, W.; Kurzydlowski, K. J.; Ramakrishna, S. Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J. Biomed. Mater. Res. B 2012, 4, 1093–1102.
  • Deepika, G.; Venugopal, J.; Prabhakaran, M. P.; Giri Dev, V. R.; Low, L.; Choon, A. T.; Ramakrishna, S. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 2009, 5, 2560–2569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.