724
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Lipid polymer hybrid carrier systems for cancer targeting: A review

, , & ORCID Icon
Pages 86-100 | Received 14 Dec 2016, Accepted 26 Feb 2017, Published online: 22 Aug 2017

References

  • Xiang, D.; Shigdar, S.; Yang, W.; Duan, W.; Li, Q.; Lin, J.; Liu, K.; Li, L. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int. J. Nanomed. 2014, 9, 1083–1096.
  • Steichen, S. D.; Caldorera-Moore, M.; Peppas, N. A. A review of current nanoparticle; and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 2013, 48, 416–427.
  • Naz, K.; Fatima, Q.-U.-A.; Ahmed, N.; Shahnaz, G.; Khan, G. M. Nanoworld: Recent advances based on nanomedicine for diagnosis and lung cancer therapy. J. Colloid Sci. Biotechnol. 2015, 4, 1–13.
  • Kim, M. H.; Na, H.-K.; Kim, Y.-K.; Ryoo, S.-R.; Cho, H. S.; Lee, K. E.; Jeon, H.; Ryoo, R.; Min, D.-H. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 2011, 5, 3568–3576.
  • Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev. 1998, 98, 2045–2076.
  • Hallan, S. S.; Kaur, P.; Kaur, V.; Mishra, N.; Vaidya, B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif. Cells Nanomed. Biotechnol. 2014, 44, 334–349.
  • Stolzoff, M.; Ekladious, I.; Colby, A. H.; Colson, Y. L.; Porter, T. M.; Grinstaff, M. W. Synthesis and characterization of hybrid polymer/lipid expansile nanoparticles: Imparting surface functionality for targeting and stability. Biomacromolecules 2015, 16, 1958–1966.
  • Soppimath, K. S.; Tan, D. C. W.; Yang, Y. Y. pH-triggered thermally responsive polymer core–shell nanoparticles for drug delivery. Adv. Mater. 2005, 17, 318–323.
  • Albanese, A.; Tang, P. S.; Chan, W. C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.
  • Desmoulière, A.; Chaponnier, C.; Gabbiani, G. Perspective article: Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005, 13, 7–12.
  • Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 2009, 3, 649–653.
  • Rosenthal, S. S.; Strange, W. C. Evidence on the nature and sources of agglomeration economies. In: Handbook of Regional and Urban Economics, Duranton, G.; Henderson, J. V.; Strange, W. C. editors. Elsevier, New York, 2004; Volume 5, Chapter 49, pp. 2119–2171.
  • Yoo, H. S.; Park, T. G. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Rel. 2004, 96, 273–283.
  • Enlow, E. M. J.; Luft, C.; Napier, M. E.; DeSimone, J. M. Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings. Nano Lett. 2011, 11, 808–813.
  • Khandare, J.; Minko, T. Polymer–drug conjugates: Progress in polymeric prodrugs. Prog. Polym. Sci. 2006, 31, 359–397.
  • Prabaharan, M.; Grailer, J. J.; Pilla, S.; Steeber, D. A.; Gong, S. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn® H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials 2009, 30, 3009–3019.
  • Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.
  • Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.
  • Crist, W. M.; Anderson, J. R.; Meza, J. L.; Fryer, C.; Raney, R. B.; Ruymann, F. B.; Breneman, J.; Qualman, S. J.; Wiener, E.; Wharam, M.; Lobe, T.; Webber, B.; Maurer, H. M.; Donaldson, S. S. Intergroup rhabdomyosarcoma study-IV: Results for patients with nonmetastatic disease. J. Clin. Oncol. 2001, 19, 3091–3102.
  • van Oosterom, A. T.; Judson, I.; Verweij, J.; Stroobants, S.; di Paola, E. D.; Dimitrijevic, S.; Martens, M.; Webb, A.; Sciot, R.; Van Glabbeke, M.; Silberman, S.; Nielsen, O. S. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: A phase I study. The Lancet 2001, 358, 1421–1423.
  • Aad, G.; et al. Observation of a new particle in the search for the standard model Higgs Boson with the ATLAS detector at the LHC. Phys. Lett. B 2012, 716, 1–29.
  • Salvador-Morales, C.; Zhang, L.; Langer, R.; Farokhzad, O. C. Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 2009, 30, 2231–2240.
  • Prabhu, R. H.; Patravale, V. B.; Joshi, M. D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomed. 2015, 10, 1001–1018.
  • Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm. 2009, 71, 431–444.
  • Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nano 2007, 2, 751–760.
  • Holmes, C. F.; Owens, B. B. Batteries for implantable biomedical applications. In: Wiley Encyclopedia of Biomedical Engineering, Akay, M. editor. Wiley, New York, 2006.
  • Zhang, L.; Chan, J. M.; Gu, F. X.; Rhee, J.-W.; Wang, A. Z.; Radovic-Moreno, A. F.; Alexis, F.; Langer, R.; Farokhzad, O. C. Self-assembled lipid–polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano 2008, 2, 1696–702.
  • Chan, J. M.; Zhang, L.; Yuet, K. P.; Liao, G.; Rhee, J.-W.; Langer, R.; Farokhzad, O. C. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 2009, 30, 1627–1634.
  • Zhang, L. I.; Zhang, L. Lipid–polymer hybrid nanoparticles: Synthesis, characterization and applications. Nano LIFE 2010, 01, 163–173.
  • Gao, L. Y.; Liu, X.-Y.; Chen, C.-J.; Wang, J.-C.; Feng, Q.; Yu, M.-Z.; Ma, X.-F.; Pei, X.-W.; Niu, Y.-J.; Qiu, C.; Pang, W.-H.; Zhang, Q. Core-shell type lipid/rPAA-chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials 2014, 35, 2066–2078.
  • Pardeshi, C. V.; Belgamwar, V. S.; Tekade, A. R.; Surana, S. J. Novel surface modified polymer–lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: In vitro, ex vivo and in vivo pharmacodynamic evaluation. J. Mater. Sci. Mater. Med. 2013, 24, 2101–2115.
  • Nam, Y. S.; Kim, J.-W.; Park, J.; Shim, J.; Lee, J. S.; Han, S. H. Tocopheryl acetate nanoemulsions stabilized with lipid–polymer hybrid emulsifiers for effective skin delivery. Colloid. Surf. B Biointerf. 2012, 94, 51–57.
  • Rao, S.; Prestidge, C. A. Polymer–lipid hybrid systems: Merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin. Drug Deliv. 2016, 13, 691–707.
  • Bray, F. The evolving scale and profile of cancer worldwide: Much ado about everything. Cancer Epidemiol. Biomark. Prevent. 2016, 25, 3–5.
  • Pohl, M.; Schmiegel, W. Therapeutic strategies in diseases of the digestive tract - 2015 and beyond targeted therapies in colon cancer today and tomorrow. Digest. Dis. 2016, 34, 574–579.
  • Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D. M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917.
  • van den Braak, R. R. C.; Vink, G. R.; van Oijen, M. G. H.; de Noo, M. E.; Kurk, S. A.; Burbach, M. J. P.; Couwenberg, A. M.; May, A. M.; Verkooijen, H. M.; Meijer, G. A.; Koopman, M. The prospective Dutch colorectal cancer cohort: A prospective nation-wide observational cohort study. Cancer Res. 2016, 76, 1827–1827.
  • Lieu, C. H.; Todd, M. P.; Jihye, K.; Aik-Choon, T.; Wells, A. M.; Nancy, Y. Y.; Cathy, E.; Gail, S. E. Emerging transcriptional landscape and putative therapeutic targets in young patients with metastatic colorectal cancer (CRC). 2016, 605.
  • Papamichael, D.; Audisio, R. A.; Glimelius, B.; de Gramont, A.; Glynne-Jones, R.; Haller, D.; Kohne, C.-H.; Rostoft, S.; Lemmens, V.; Mitry, E.; Rutten, H.; Sargent, D.; Sastre, J.; Seymour, M.; Starling, N.; Van Cutsem, E.; Aapro, M. Treatment of colorectal cancer in older patients: International Society of Geriatric Oncology (SIOG) consensus recommendations 2013. Ann. Oncol. 2015, 26, 463–476.
  • Center, M. M.; Jemal, A.; Ward, E. International trends in colorectal cancer incidence rates. Cancer Epidemiol. Biomark. Prevent. 2009, 18, 1688–1694.
  • Rimes, S. J.; Fox, D.; Knapp, K. M.; Meertens, R. The development and evaluation of an audit tool for measuring reporting accuracy of radiographers compared with radiologists for intra-luminal pathology detected at computed tomography colonography (CTC). Radiography 2015, 21, 264–268.
  • Aarts, M. J.; Lemmens, V. E. P. P.; Louwman, M. W. J.; Kunst, A. E.; Coebergh, J. W. W. Socioeconomic status; and changing inequalities in colorectal cancer? A review of the associations with risk, treatment; and outcome. Eur. J. Cancer 2010, 46, 2681–2695.
  • Van Leersum, N.; Janssen-Heijnen, M. L. G.; Wouters, M. W. J. M.; Rutten, H. J. T.; Coebergh, J. W.; Tollenaar, R. A. E. M.; Lemmens, V. E. P. P. Increasing prevalence of comorbidity in patients with colorectal cancer in the South of the Netherlands 1995–2010. Int. J. Cancer 2013, 132, 2157–2163.
  • Hayes, S. C.; Spence, R. R.; Galvão, D. A.; Newton, R. U. Australian association for exercise and sport science position stand: Optimising cancer outcomes through exercise. J. Sci. Med. Sport 2009, 12, 428–434.
  • Underhill, C.; Bartel, R.; Goldstein, D.; Snodgrass, H.; Begbie, S.; Yates, P.; White, K.; Jong, K.; Grogan, P. Mapping oncology services in regional and rural Australia. Austral. J. Rural Health 2009, 17, 321–329.
  • Hewitt, M.; Greenfield, S.; Stovall, E. From Cancer Patient to Cancer Survivor: Lost in Transition; National Academies Press, Washington, DC, 2005.
  • Verma, S.; Vipin, K.; Mishra, D, N.; Singh, S. K. Colon targeted drug delivery: Current; & novel perspectives. Int. J. Pharm. Sci. Res. 2012, 3, 1274.
  • Ahmed, P.; Dasgupta, D.; Pandit, S.; Dewan, N. A promising approach to support appropriate colon target drug delivery system: A review. World J. Pharm. Pharm. Sci. 2016, 5, 556–568.
  • Tiwari, G.; Tiwari, R.; Wal, P.; Wal, A.; Rai, A. K. Primary and novel approaches for colon targeted drug delivery: A review. Int. J. Drug Deliv. 2010, 2, 1–11.
  • Singla, D.; Kumar, S. L. H.; Nirmala, G. Osmotic pump drug delivery: A novel approach. Int. J. Res. Pharm. Chem. 2012, 2, 661–670.
  • Singh, K. I.; Singh, J.; Sharma, D.; Sharma, A. Colon specific drug delivery system: Review on novel approaches. Int. J. Pharm. Sci. Res. 2012, 3, 637.
  • André, T.; Boni, C.; Mounedji-Boudiaf, L.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Zaninelli, M.; Clingan, P.; Bridgewater, J.; Tabah-Fisch, I.; de Gramont, A. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. New Engl. J. Med. 2004, 350, 2343–2351.
  • Andre, T.; Boni, C.; Mounedji-Boudiaf, L.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Zaninelli, M.; Clingan, P.; Bridgewater, J.; Tabah-Fisch, I.; Aimery de Gramont. [Adjuvant treatment of colon cancer MOSAIC study’s main results]. Bull. Cancer 2006, 93, S5–S9.
  • Schmoll, H.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; van de Velde, C. J.; Balmana, J.; Regula, J.; Nagtegaal, I. D.; Beets-Tan, R. G.; Arnold, D.; Ciardiello, F.; Hoff, P.; Kerr, D.; Kohne, C. H.; Labianca, R.; Price, T.; Scheithauer, W.; Sobrero, A.; Tabernero, J.; Aderka, D.; Barroso, S.; Bodoky, G.; Douillard, J. Y.; El Ghazaly, H.; Gallardo, J.; Garin, A.; Glynne-Jones, R.; Jordan, K.; Meshcheryakov, A.; Papamichail, D.; Pfeiffer, P.; Souglakos, I.; Turhal, S.; Cervantes, A. ESMO Consensus Guidelines for management of patients with colon; and rectal cancer. a personalized approach to clinical decision making. Ann. Oncol. 2012, 23, 2479–2516.
  • Mandal, B.; Bhattacharjee, H.; Mittal, N.; Sah, H.; Balabathula, P.; Thoma, L. A.; Wood, G. C. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013, 9, 474–491.
  • Troutier, A.-L.; Delair, T.; Pichot, C.; Ladavière, C. Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir 2005, 21, 1305–1313.
  • Thevenot, J.; Troutier, A.-L.; David, L.; Delair, T.; Ladavière, C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules 2007, 8, 3651–3660.
  • Zeng, S.-Q.; Chen, Y.-Z.; Chen, Y.; Liu, H. Lipid–polymer hybrid nanoparticles for synergistic drug delivery to overcome cancer drug resistance. New J. Chem. 2017, 41, 1518–1525.
  • Wong, H. L.; Rauth, A. M.; Bendayan, R.; Manias, J. L.; Ramaswamy, M.; Liu, Z.; Erhan, S. Z.; Wu, X. Y. A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res. 2006, 23, 1574–1585.
  • Fang, D. L.; Chen, Y.; Xu, B.; Ren, K.; He, Z.-Y.; He, L.-L.; Lei, Y.; Fan, C.-M.; Song, X.-R. Development of lipid-shell and polymer core nanoparticles with water-soluble salidroside for anti-cancer therapy. Int. J. Mol. Sci. 2014, 15, 3373–3388.
  • Bagre, A. P.; Jain, K.; Jain, N. K. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment. Int. J. Pharm. 2013, 456, 31–40.
  • Hu, C. M.; Zhang, L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012, 83, 1104–1111.
  • Tanaka, A.; Nakashima, H.; Kashimura, Y.; Sumitomo, K. Electrostatically induced planar lipid membrane formation on a cationic hydrogel array by the fusion of small negatively charged unilamellar vesicles. Colloid. Surf. A Physicochem. Eng. Asp. 2015, 477, 63–69.
  • Hu, C. M.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U S A 2011, 108, 10980–10985.
  • Lallana, E.; Fernandez-Trillo, F.; Sousa-Herves, A.; Riguera, R.; Fernandez-Megia, E. Click chemistry with polymers, dendrimers, and hydrogels for drug delivery. Pharm. Res. 2012, 29, 902–921.
  • Lee, S.-M.; Chen, H.; Dettmer, C. M.; O’Halloran, T. V.; Nguyen, S. T. Polymer-caged lipsomes: a pH-responsive delivery system with high stability. J. Am. Chem. Soc. 2007, 129, 15096–15097.
  • Lee, S.-M.; Nguyen, S. T. Smart nanoscale drug delivery platforms from stimuli-responsive polymers and liposomes. Macromolecules 2013, 46, 9169–9180.
  • Gao, H.; Schwarz, J.; Weisspapir, M. Hybrid lipid–polymer nanoparticulate delivery composition. Google Patents, 2007.
  • Lin, T.; Wang, H.; Wang, H.; Wang, X. The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 2004, 15, 1375.
  • Shi, J.; Xiao, Z.; Votruba, A. R.; Vilos, C.; Farokhzad, O. C. Differentially charged hollow core/shell lipid–polymer–lipid hybrid nanoparticles for small interfering RNA delivery. Angew. Chem. Int. Ed. 2011, 50, 7027–7031.
  • Pautot, S.; Frisken, B. J.; Cheng, J.-X.; Xie, X. S.; Weitz, D. A. Spontaneous formation of lipid structures at oil/water/lipid interfaces. Langmuir 2003, 19, 10281–10287.
  • Hu, Q.; Katti, P. S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014, 6, 12273–12286.
  • Wang, H.; Zhao, P.; Liang, X.; Gong, X.; Song, T.; Niu, R.; Chang, J. Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery. Biomaterials 2010, 31, 4129–4138.
  • Aravind, A.; Jeyamohan, P.; Nair, R.; Veeranarayanan, S.; Nagaoka, Y.; Yoshida, Y.; Maekawa, T.; Sakthi Kumar, D. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting; and drug delivery. Biotechnol. Bioeng. 2012, 109, 2920–2931.
  • Hu, C.-M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. 2011, 108, 10980–10985.
  • Devrim, B.; Bozkır, A. Preparation and in vitro evaluation of surface-modified poly (lactide-co-glycolide) microparticles as biodegradable drug carriers for pulmonary peptide and protein delivery. J. Microencapsul. 2014, 31, 355–362.
  • Dong, X.; Mattingly, C. A.; Tseng, M. T.; Cho, M. J.; Liu, Y.; Adams, V. R.; Mumper, R. J. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 2009, 69, 3918–3926.
  • Betancourt, T.; Brown, B.; Brannon-Peppas, L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: Preparation, characterization and in vitro evaluation. Nanomedicine 2007, 2, 219–232.
  • Zhang, L.; Zhu, D.; Dong, X.; Sun, H.; Song, C.; Wang, C.; Kong, D. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery. Int. J. Nanomed. 2015, 10, 2101–2114.
  • Jain, A.; Kesharwani, P.; Garg, N. K.; Jain, A.; Jain, S. A.; Jain, A. K.; Nirbhavane, P.; Ghanghoria, R.; Tyagi, R. K.; Katare, O. P. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloid. Surf. B Biointerf. 2015, 134, 47–58.
  • Powell, D.; Chandra, S.; Dodson, K.; Shaheen, F.; Wiltz, K.; Ireland, S.; Syed, M.; Dash, S.; Wiese, T.; Mandal, T.; Kundu, A. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur. J. Pharm. Biopharm. 2017, 114, 108–118.
  • Liu, Y.; Li, K.; Pan, J.; Liu, B.; Feng, S.-S. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel. Biomaterials 2010, 31, 330–338.
  • Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O. B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Rel. 2013, 171, 349–357.
  • Chu, C.-H.; Wang, Y.-C.; Huang, H.-Y.; Wu, L.-C.; Yang, C.-S. Ultrafine PEG-coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications. Nanotechnology 2011, 22, 185601.
  • Wong, H. L.; Bendayan, R.; Rauth, A. M.; Wu, X. Y. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer–lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J. Control. Rel. 2006, 116, 275–284.
  • Subedi, R. K.; Kang, K. W.; Choi, H.-K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur. J. Pharm. Sci. 2009, 37, 508–513.
  • Essex, S.; Navarro, G.; Sabhachandani, P.; Chordia, A.; Trivedi, M.; Movassaghian, S.; Torchilin, V. P. Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors. Gene Ther. 2015, 22, 41–50.
  • Fang, R. H.; Aryal, S.; Jack Hu, C.-M.; Zhang, L. Quick synthesis of lipid–polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir 2010, 26, 16958–16962.
  • Hadinoto, K.; Sundaresan, A.; Cheow, W. S. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm. 2013, 85, 427–443.
  • Mieszawska, A. J.; Kim, Y.; Gianella, A.; van Rooy, I.; Priem, B.; Labarre, M. P.; Ozcan, C.; Cormode, D. P.; Petrov, A.; Langer, R.; Farokhzad, O. C.; Fayad, Z. A.; Mulder, W. J. M. Synthesis of polymer–lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug. Chem. 2013, 24, 1429–1434.
  • Fenart, L.; Casanova, A.; Dehouck, B.; Duhem, C.; Slupek, S.; Cecchelli, R.; Betbeder, D. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood–brain barrier. J. Pharmacol. Exp. Therapeut. 1999, 291, 1017–1022.
  • Zhao, Y.; Lin, D.; Wu, F.; Guo, L.; He, G.; Ouyang, L.; Song, X.; Huang, W.; Li, X. Discovery and in vivo evaluation of novel RGD-modified lipid–polymer hybrid nanoparticles for targeted drug delivery. Int. J. Mol. Sci. 2014, 15, 17565–17576.
  • Wang, G.; Yu, B.; Wu, Y.; Huang, B.; Yuan, Y.; Liu, C. S. Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Int. J. Pharm. 2013, 446, 24–33.
  • Thevenot, J.; Troutier, A.-L.; David, L.; Delair, T.; Ladavière, C. Steric stabilization of lipid/polymer particle assemblies by poly (ethylene glycol)-lipids. Biomacromolecules 2007, 8, 3651–3660.
  • Wang, J.; Liu, W.; Tu, Q.; Wang, J.; Song, N.; Zhang, Y.; Nie, N.; Wang, J. Folate-decorated hybrid polymeric nanoparticles for chemically and physically combined paclitaxel loading and targeted delivery. Biomacromolecules 2011, 12, 228–234.
  • De Miguel, I.; Imbertie, L.; Rieumajou, V.; Major, M.; Kravtzoff, R.; Betbeder, D. Proofs of the structure of lipid coated nanoparticles (SMBV™) used as drug carriers. Pharm. Res. 2000, 17, 817–824.
  • Hitzman, C. J.; Elmquist, W. F.; Wattenberg, L. W.; Wiedmann, T. S. Development of a respirable, sustained release microcarrier for 5-fluorouracil I: In vitro assessment of liposomes, microspheres, and lipid coated nanoparticles. J. Pharm. Sci. 2006, 95, 1114–1126.
  • Li, X.; Anton, N.; Arpagaus, C.; Belleteix, F.; Vandamme, T. F. Nanoparticles by spray drying using innovative new technology: The Büchi Nano Spray Dryer B-90. J. Control. Rel. 2010, 147, 304–310.
  • Hasan, W.; Chu, K.; Gullapalli, A.; Dunn, S. S.; Enlow, E. M.; Luft, J. C.; Tian, S.; Napier, M. E.; Pohlhaus, P. D.; Rolland, J. P.; DeSimone, J. M. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2012, 12, 287–292.
  • Troutier, A.-L.; Ladavière, C. An overview of lipid membrane supported by colloidal particles. Adv. Colloid Interf. Sci. 2007, 133, 1–21.
  • Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 2012, 7, 623–629.
  • Su, X.; Fricke, J.; Kavanagh, D. G.; Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharm. 2011, 8, 774–787.
  • Yang, F.; Hanna, M. A.; Sun, R. Value-added uses for crude glycerol: A byproduct of biodiesel production. Biotechnol. Biofuel. 2012, 5, 1.
  • Zheng, Y.; Yu, B.; Weecharangsan, W.; Piao, L.; Darby, M.; Mao, Y.; Koynova, R.; Yang, X.; Li, H.; Xu, S.; Lee, L. J.; Sugimoto, Y.; Brueggemeier, R. W.; Lee, R. J. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7α -APTADD to breast cancer cells. Int. J. Pharm. 2010, 390, 234–241.
  • Mittal, G., Sahana, D. K.; Bhardwaj, V.; Ravi Kumar, M. N. V. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J. Control. Rel. 2007, 119, 77–85.
  • Jelesarov, I.; Bosshard, H. R. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 1999, 12, 3–18.
  • Valenta, C.; Auner, B. G. The use of polymers for dermal and transdermal delivery. Eur. J. Pharm. Biopharm. 2004, 58, 279–289.
  • Chan, J. M.; Valencia, P. M.; Zhang, L.; Langer, R.; Farokhzad, O. C. Polymeric nanoparticles for drug delivery. Methods Mol. Biol. 2010, 624, 163–175.
  • Cheow, W. S.; Hadinoto, K. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloid. Surf. B Biointerf. 2011, 85, 214–220.
  • Bershteyn, A.; Chaparro, J.; Yau, R.; Kim, M.; Reinherz, E.; Ferreira-Moita, L.; Irvine, D. J. Polymer-supported lipid shells, onions, and flowers. Soft Matter 2008, 4, 1787–1791.
  • Liu, L.; Ma, P.; Wang, H.; Zhang, C.; Sun, H.; Wang, C.; Song, C.; Leng, X.; Kong, D.; Ma, G. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. J. Control. Rel. 2016, 225, 230–239.
  • Gu, F. X.; Karnik, R.; Wang, A. Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R. S.; Farokhzad, O. C. Targeted nanoparticles for cancer therapy. Nano Today 2007, 2, 14–21.
  • Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. In: Urologic Oncology: Seminars and Original Investigations, Elsevier, New York, 2008.
  • Bai, S.; Thomas, C.; Rawat, A.; Ahsan, F. Recent progress in dendrimer-based nanocarriers. Crit. Rev. Therap. Drug Carrier Syst. 2006, 23, 437–495.
  • Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2002, 2, 750–763.
  • Hilgenbrink, A. R.; Low, P. S. Folate receptor mediated drug targeting: From therapeutics to diagnostics. J. Pharm. Sci. 2005, 94, 2135–2146.
  • Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.
  • Stella, B.; Arpicco, S.; Peracchia, M. T.; Desmaële, D.; Hoebeke, J.; Renoir, M.; D’Angelo, J.; Cattel, L.; Couvreur, P. Design of folic acid conjugated nanoparticles for drug targeting. J. Pharm. Sci. 2000, 89, 1452–1464.
  • Ponka, P.; Lok, C. N. The transferrin receptor: Role in health and disease. Int. J. Biochem. Cell Biol. 1999, 31, 1111–1137.
  • Sahoo, S. K.; Labhasetwar, V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm. 2005, 2, 373–383.
  • Wilson, D. S.; Szostak, J. W. In vitro selection of functional nucleic acids. Ann. Rev. Biochem. 1999, 68, 611–647.
  • Mehren, M. V.; Adams, G. P.; Weiner, L. M. Monoclonal antibody therapy for cancer. Ann. Rev. Med. 2003, 54, 343–369.
  • Weiner, L. M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327.
  • Song, S.; Liu, D.; Peng, J.; Deng, H.; Guo, Y.; Xu, L. X.; Miller, A. D.; Xu, Y. Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo. FASEB J. 2009, 23, 1396–1404.
  • Wainszelbaum, M. J.; Fessler, J.; Lahdenranta, J.; Burenkova, O.; Gerami-Moayed, N.; Hashambhoy-Ramsay, Y.; Rimkunas, V.; MacBeath, G. Abstract LB-C25: Inhibition of ERBB3 with MM-121, IGF1-R with MM-141 or Met with MM-131 increases the activity of EGFR inhibitor MM-151 in colorectal cancer models expressing multiple resistance ligands. Mol. Cancer Therap. 2015, 14, LB-C25–LB-C25.
  • Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. S.; Leamon, C. P. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 2005, 338, 284–293.
  • Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. Exp. 2012, 3, 18496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.