213
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Modified poly(L-lactic acid) microspheres with nanofibrous structure suitable for biomedical application

, , & ORCID Icon
Pages 572-580 | Received 10 May 2017, Accepted 08 Jul 2017, Published online: 07 Sep 2017

References

  • Shen, J.; Lee, K.; Choi, S.; Qu, W.; Wang, Y.; Burgess, D. J. A reproducible accelerated in vitro release testing method for PLGA microspheres. Int. J. Pharm. 2016, 498, 274–282.
  • Song, Y. H.; Shin, E.; Wang, H.; Nolan, J.; Low, S.; Parsons, D. A novel in situ hydrophobic ion pairing (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system. J. Control. Release 2016, 229, 106–119.
  • Kim, J. M.; Han, T. S.; Kim, M. H. Osteogenic evaluation of calcium phosphate scaffold with drug-loaded poly(lactic-co-glycolic acid) microspheres in beagle dogs. Tissue Eng. Regen. Med. 2012, 9, 175–183.
  • Holmkvist, A. D.; Friberg, A.; Nilsson, U. J.; Schouenborg, J. Hydrophobic ion pairing of a minocycline/Ca2+/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release. Int. J. Pharm. 2016, 499, 351–357.
  • Hong, Y.; Gao, C. Y.; Xie, Y.; Gong, Y. H.; Shen, J. C. Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 2005, 26, 6305–6313.
  • Zafar, N.; Bitar, A.; Valour, J. P.; Fessi, H.; Elaissari, A. Elaboration of ammonio methacrylate copolymer based spongy cationic particles via double emulsion solvent evaporation process. Mater. Sci. Eng. C 2016, 61, 85–96.
  • Fan, Q.; Qi, F.; Miao, C. Y.; Yue, H.; Gong, F. L.; Wu, J.; Ma, G. H.; Su, Z. G. Direct and controllable preparation of uniform PLGA particles with various shapes and surface morphologies. Colloids Surf. A 2016, 500, 177–185.
  • Floyd, J. A.; Galperin, A.; Ratner, B. D. Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy. J. Biomed. Mater. Res. A 2016, 104, 544–552.
  • Wanga, Y. J.; Molinb, D. G. M.; Sevrinc, C. In vitro and in vivo evaluation of drug-eluting microspheres designed for transarterial chemoembolization therapy. Int. J. Pharm. 2016, 503, 150–162.
  • Han, W. Q.; Zhao, J. H.; Tu, M.; Zeng, R.; Zha, Z. G.; Zhou, C. G. Preparation; and characterization of nanohydroxyapatite strengthening nanofibrous poly(L-lactide) scaffold for bone tissue engineering. J. Appl. Polym. Sci. 2013, 128, 1332–1338.
  • Hoyer, M.; Drechsel, N.; Meyer, M.; Meier, C.; Hinüber, C.; Breier, A. Embroidered polymer–collagen hybrid scaffold variants for ligament tissue engineering. Mater. Sci. Eng. C 2014, 43, 290–299.
  • Chen, J.; Chu, B.; Hsiao, B. S. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J. Biomed. Mater. Res. A 2006, 79, 307–317.
  • Zhu, Y.; Leong, M. F.; Ong, W. F.; Chan-Park, M. B.; Chian, K. S. Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 2007, 28, 861–868.
  • Zhu, Y. B.; Gao, C. Y.; Liu, X. Y.; He, T.; Shen, J. C. Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 2004, 10, 53–61.
  • Lassalle, V.; Luján, M. PLA nano-; & microparticles for drug delivery: An overview of the methods of preparation. Macromol. Biosci. 2007, 6, 767–783.
  • Piñón-Segundo, E.; Nava-Arzaluz, M.; Lechuga-Ballesteros, D. Pharmaceutical polymeric nanoparticles prepared by the double emulsion- solvent evaporation technique. Recent Pat. Drug Delivery Formul. 2012, 6, 224–235.
  • Bouza, R.; Castro, M. M.; Dopico-García, S.; González-Rodríguez, M. V.; Barral, L. F.; Bittmann, B. Polylactic acid and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nano and microparticles for packaging bioplastic composites. Polym. Bull. 2016, 73, 3485–3502.
  • Huang, G. P.; Shobana, S.; Masih, P. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. A 2015, 103, 762–771.
  • Wei, G.; Ma, P. X. Macroporous and nanofbrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J. Biomed. Mater. Res. A 2006, 78A, 306–315.
  • Holzwarth, J. M.; Ma, P. X. Biomimetic nanofbrous scaffolds for bone tissue engineering. Biomaterials 2011, 32, 9622–9629.
  • Zhang, K. H.; Zheng, H. H.; Liang, S.; Gao, C. Y. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater. 2016, 37, 131–142.
  • Liu, X. H.; Jin, X. B.; Ma, P. X. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat. Mater. 2011, 10, 398–406.
  • Ma, C.; Jing, Y.; Sun, H. C. Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv. Health. Mater. 2015, 4, 2699–2708.
  • Noh, D. Y.; An, Y. H.; Jo, I. H. Synthesis of nanofibrous gelatin/silica bioglass composite microspheres using emulsion coupled with thermally induced phase separation. Mater. Sci. Eng. C 2016, 62, 678–685.
  • Matsuhashi, A.; Nam, K.; Kimura, T. Fabrication of fibrillized collagen microspheres with the microstructure resembling an extracellular matrix. Soft Matter 2015, 11, 2844–2851.
  • Mao, J. F.; Duan, S.; Song, A. N. Macroporous and nanofibrous poly(lactide-co-glycolide) (50/50) scaffolds via phase separation combined with particle-leaching. Mater. Sci. Eng. C 2012, 32, 1407–1414.
  • Du, Y. Z.; Chen, X. F.; Koh, Y. H. Facilely fabricating PCL nanofibrous scaffolds with hierarchical pore structure for tissue engineering. Mater. Lett. 2014, 122, 62–65.
  • Katsogiannis, K. A. G.; Vladisavljević, G. T.; Georgiadou, S. Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur. Polym. J. 2015, 69, 284–295.
  • Feng, W.; Yin, Z. Q.; Wang, W. Z. Synthesis and characterization of nanofibrous hollow microspheres with tunable size and morphology via thermally induced phase separation technique. RSC Adv. 2015, 5, 61580–61585.
  • Cuneyt, T. A. Synthesis of biomimetic Ca hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials 2000, 21, 1429–1438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.