422
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Influence of carbon nanotubes structures embedded in UHMWPE on bacterial adherence

, , , , , & show all
Pages 934-941 | Received 30 Mar 2017, Accepted 14 Oct 2017, Published online: 27 Nov 2017

References

  • Donlan, R. M.; Costerton, J. W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193.
  • Donlan, R. M. Biofilm formation: A clinically relevant microbiological process. Clin. Infect. Dis. 2001, 33, 1387–1392.
  • Costerton, J.W.; Montanaro, L.; Arciola, C. R. Biofilm in implant infections: Its production and regulation. Int J Artif Organs. 2005, 28, 1062–8.
  • Costerton, J. W. ed Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin. Orthop. Relat. Res. 2005, 437, 7–11.
  • Roberts, V. I.; Esler, C. N.; Harper, W. M. A 15-year follow-up study of 4606 primary total knee replacements. J. Bone Joint Surg. Br. 2007, 89, 1452–1456.
  • Osmon, D. R. Microbiology and antimicrobial challenges of prosthetic joint infection. J. Am. Acad. Orthop. Surg. 2017, 25, S17–S19.
  • Tande, A. J.; Gomez-Urena, E. O.; Berbari, E. F.; Osmon, D. R. Management of prosthetic joint infection. Infect Dis. Clin. North Am. 2017, 31, 237–252.
  • Zimmerli, W.; Trampuz, A.; Ochsner, P. E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654.
  • Poultsides, L. A.; Liaropoulos, L. L.; Malizos, K. N. The socioeconomic impact of musculoskeletal infections. J. Bone Joint Surg. Am. 2010, 92, e13.
  • Peel, T. N.; Cheng, A. C.; Lorenzo, Y. P.; Kong, D. C.; Buising, K. L.; Choong, P. F. Factors influencing the cost of prosthetic joint infection treatment. J. Hosp. Infect 2013, 85, 213–219.
  • Peel, T. N.; Dowsey, M. M.; Buising, K. L.; Liew, D.; Choong, P. F. Cost analysis of debridement and retention for management of prosthetic joint infection. Clin. Microbiol. Infect. 2013, 19, 181–186.
  • Kurtz, S. M.; Muratoglu, O. K.; Evans, M.; Edidin, A. A. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 1999, 20, 1659–1688.
  • Santavirta, S.; Bohler, M.; Harris, W. H.; Konttinen, Y. T.; Lappalainen, R.; Muratoglu, O.; Rieker, C.; Salzer, M. Alternative materials to improve total hip replacement tribology. Acta Orthop. Scand. 2003, 74, 380–388.
  • Puertolas, J. A.; Kurtz, S. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthoplastic applications: A review. J. Mech. Behav. Biomed. Mater. 2014, 39, 129–145.
  • Kilgus, D. J.; Moreland, J. R.; Finerman, G. A.; Funahashi, T. T.; Tipton, J. S. Catastrophic wear of tibial polyethylene inserts. Clin. Orthop. Relat. Res. 1991, 223–231.
  • Sobieraj, M. C.; Rimnac, C. M. Ultra high molecular weight polyethylene: Mechanics, morphology, and clinical behavior. J. Mech. Behav. Biomed. Mater. 2009, 2, 433–443.
  • Katsikogianni, M.; Missirlis, Y. F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cell Mater. 2004, 8, 37–57.
  • Esteban, J.; Pérez-Tanoira, R.; Pérez-Jorge, C.; Gomez-Barrena, E. Bacterial adherence to biomaterials used in surgical procedures. In: Kon, K.; Rai, M.; eds. Microbiology for Surgical Infections: Diagnosis, Prognosis and Treatment. Academic Press-Elsevier: London, 2014; pp. 41–60.
  • Gomez-Barrena, E.; Esteban, J.; Molina-Manso, D.; Adames, H.; Martinez-Morlanes, M. J.; Terriza, A.; Yubero, F.; Puértolas, J. A. Bacterial adherence on UHMWPE with vitamin E: An in vitro study. J. Mater. Sci. Mater. Med. 2011, 22, 1701–1706.
  • Butler, K. R., Jr.; Benghuzzi, H.; Tucci, M.; Puckett, A. Amino acid coated UHMWPE implants modify macrophage migration in the tissue-implant response—Biomed 2011. Biomed. Sci. Instrum. 2011, 47, 240–245.
  • Del Prado, G.; Terriza, A.; Ortiz-Perez, A.; Molina-Manso, D.; Mahillo, I.; Yubero, F.; Puértolas, J. A.; Manrubia‐Cobo, M.; Gómez Barrena, E.; Esteban, J. DLC coatings for UHMWPE: Relationship between bacterial adherence; and surface properties. J. Biomed. Mater. Res. A 2012, 100, 2813–20.
  • Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, YK. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006, 44, 1624–1652.
  • Jia, X.; Wei, F. Advances in production and applications of carbon nanotubes. Top Curr. Chem. 2017, 375, 18.
  • Sharma, P.; Mehra, N. K.; Jain, K.; Jain, N. K. Biomedical applications of carbon nanotubes: A critical review. Curr. Drug Deliv. 2016, 13, 796–817.
  • Aschberger, K.; Johnston, H. J.; Stone, V.; Aitken, R. J.; Hankin, S. M.; Peters, S. A.; Tran, C. L.; Christensen, F. M. Review of carbon nanotubes toxicity and exposure—Appraisal of human health risk assessment based on open literature. Crit. Rev. Toxicol. 2010, 40, 759–790.
  • Zhao, X.; Liu, R. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 2012, 40, 244–255.
  • Pacurari, M.; Lowe, K.; Tchounwou, P. B.; Kafoury, R. A review on the respiratory system toxicity of carbon nanoparticles. Int. J. Environ. Res. Public Health 2016, 13, 325.
  • Zardini, H. Z.; Davarpanah, M.; Shanbedi, M.; Amiri, A.; Maghrebi, M.; Ebrahimi, L. Microbial toxicity of ethanolamines—Multiwalled carbon nanotubes. J. Biomed. Mater. Res. A 2014, 102, 1774–1781.
  • Silva, E.; Colleta, H. M.; Ferlauto, A.; Moreira, R.; Resende, R.; Oliveira, S.; Kitten, G. T.; Lacerda, R. G.; Ladeira, L. O. Nanostructured 3D collagen/nanotube biocomposites for future bone regeneration scaffolds. Nano Res. 2009, 2, 462–473.
  • Reis, J.; Kanagaraj, S.; Fonseca, A.; Mathew, M. T.; Capela-Silva, F.; Potes, J.; Pereira, A.; Oliveira, M. S. A.; Simões, J. A. In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells. Braz. J. Med. Biol. Res. 2010, 43, 476–482.
  • Jiang, Y. Q.; Ouyang, Z.; Zhang, H. G.; Wang, Y. F.; Kang, N.; Lin, C. L.; Hou, Z. Q.; Ye, S. F.; Ren, L. A molecular basis for enhanced biocompatibility of osteoblasts on poly(lactic-coglycolic acid)-multi-wall carbon nanotubes nanocomposite. Curr. Nanosci. 2012, 8, 587–597.
  • Ogihara, N.; Usui, Y.; Aoki, K.; Shimizu, M.; Narita, N.; Hara, K.; Nakamura, K.; Ishigaki, N.; Takanashi, S.; Okamoto, M.; Kato, H. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine (London) 2012, 7, 981–993.
  • Tong, Q.; Qingzhi, W.; Honglian, D.; Xinyu, W.; Youfa, W.; Shipu, L.; Junli, L. A comparative study on the effects of pristine and functionalized single-walled carbon nanotubes on osteoblasts: Ultrastructural; and biochemical properties. J. Mater. Sci. Mater. Med. 2014, 25, 1915–1923.
  • Abe, S.; Itoh, S.; Hayashi, D.; Kobayashi, T.; Kiba, T.; Akasaka, T.; Uo, M., Yawaka, Y.; Sato, S. I.; Watari, F.; Takada, T. Biodistribution of aqueous suspensions of carbon nanotubes in mice and their biocompatibility. J. Nanosci. Nanotechnol. 2012, 12, 700–706.
  • Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007, 23, 8670–8673.
  • Seabra, A. B.; Paula, A. J.; Duran, N. Redox-enzymes, cells and micro-organisms acting on carbon nanostructures transformation: a mini-review. Biotechnol. Prog. 2013, 29, 1–10.
  • Valle, J.; Toledo-Arana, A.; Berasain, C.; Ghigo, J. M.; Amorena, B.; Penades, J. R.; Lasa, I. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol. Microbiol. 2003, 48, 1075–1087.
  • Katsikogianni, M.; Spiliopoulou, I.; Dowling, D. P.; Missirlis, Y. F. Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings. J. Mater. Sci. Mater. Med. 2006, 17, 679–689.
  • in het Panhuis, M.; Sainz, R.; Innis, P. C.; Kane-Maguire, L. A.; Benito, A. M.; Martinez, M. T.; Moulton, S. E.; Wallace, G. G.; Maser, W. K. Optically active polymer carbon nanotube composite. J. Phys. Chem. B 2005, 109, 22725–22729.
  • Owens, D. K.; Wendt, R. C. Estimation of surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747.
  • Trampuz, A.; Osmon, D. R.; Hanssen, A. D.; Steckelberg, J. M.; Patel, R. Molecular; and antibiofilm approaches to prosthetic joint infection. Clin. Orthop. Relat. Res. 2003, 414, 69–88.
  • Benito, N.; Franco, M.; Ribera, A.; Soriano, A.; Rodriguez-Pardo, D.; Sorli, L.; Fresco, G.; Fernández-Sampedro, M.; Del Toro, M. D.; Guío, L.; Sánchez-Rivas, E. Time trends in the aetiology of prosthetic joint infections: A multicentre cohort study. Clin. Microbiol. Infect 2016, 22, 732-e1–738.
  • Harris, L. G.; Richards, R. G. Staphylococci and implant surfaces: A review. Injury 2006, 37, S3–S14.
  • Esteban, J.; Alonso-Rodriguez, N.; del-Prado, G.; Ortiz-Perez, A.; Molina-Manso, D.; Cordero-Ampuero, J.; Sandoval, E.; Fernández-Roblas, R.; Gómez-Barrena, E. PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop. 2012, 83, 299–304.
  • Piper, K. E.; Jacobson, M. J.; Cofield, R. H.; Sperling, J. W.; Sanchez-Sotelo, J.; Osmon, D. R.; McDowell, A.; Patrick, S.; Steckelberg, J. M.; Mandrekar, J. N.; Sampedro, M. F. Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J. Clin. Microbiol. 2009, 47, 1878–1884.
  • Soriano, F.; Ponte, C. A case of urinary tract infection caused by Corynebacterium urealyticum; & coryneform group F1. Eur. J. Clin. Microbiol. Infect Dis. 1992, 11, 626–628.
  • Duggan, J. M.; Sedgley, C. M. Biofilm formation of oral and endodontic Enterococcus faecalis. J. Endod. 2007, 33, 815–818.
  • El Helou, O. C.; Berbari, E. F.; Marculescu, C. E.; El Atrouni, W. I.; Razonable, R. R.; Steckelberg, J. M.; Hanssen, A. D.; Osmon, D. R. Outcome of enterococcal prosthetic joint infection: Is combination systemic therapy superior to monotherapy? Clin. Infect Dis. 2008, 47, 903–909.
  • Dedeic-Ljubovic, A.; Hukic, M.; Bekic, D.; Zvizdic, A. Frequency and distribution of diarrhoeagenic Escherichia coli strains isolated from pediatric patients with diarrhoea in Bosnia and Herzegovina. Bosn. J. Basic Med. Sci. 2009, 9, 148–155.
  • Trampuz, A.; Piper, K. E.; Hanssen, A. D.; Osmon, D. R.; Cockerill, F. R.; Steckelberg, J. M.; Patel, R. Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination. J. Clin. Microbiol. 2006, 44, 628–631.
  • Esteban, J.; Sorli, L.; Alentorn-Geli, E.; Puig, L.; Horcajada, J. P. Conventional and molecular diagnostic strategies for prosthetic joint infections. Expert Rev. Mol. Diagn. 2014, 14, 83–96.
  • Soininen, A.; Levon, J.; Katsikogianni, M.; Myllymaa, K.; Lappalainen, R.; Konttinen, Y. T.; Kinnari, T. J.; Tiainen, V. M.; Missirlis, Y. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions. J. Mater. Sci. Mater. Med. 2011, 22, 629–636.
  • Mazumder, S.; Falkinham, J. O., 3rd; Dietrich, A. M.; Puri, I. K. Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation. Biofouling 2010, 26, 333–339.
  • Sudagidan, M.; Erdem, I.; Cavusoglu, C.; Ciftcloglu, M. Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials. Mikrobiyol. Bul. 2010, 44, 93–103.
  • Rama Sreekanth, P. S.; Kanagaraj, S. Assessment of bulk and surface properties of medical grade UHMWPE based nanocomposites using nanoindentation and microtensile testing. J. Mech. Behav. Biomed. Mater. 2013, 18, 140–51.
  • Martínez-Morlanes, M. J.; Castell, P.; Alonso, P. J.; Martínez, M. T.; Puértolas, J. A. Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon 2012, 50, 2442–2452.
  • Castell, P.; Martínez-Morlanes, M. J.; Alonso, P. J.; Martínez, M. T.; Puértolas, J. A. A novel approach to the chemical stabilization of gamma-irradiated ultrahigh molecular weight polyethylene using arc-discharge multi-walled carbon nanotubes. J. Mater. Sci. 2013, 48, 6549–6557.
  • Renner, L. D.; Weibel, D. B. Physicochemical regulation of biofilm formation. MRS Bull. 2011, 36, 347–355.
  • Park, W.-I.; Kim, H.-S.; Kwon, S.-M.; Hong, Y.-H.; Jin, H.-J. Synthesis of bacterial celluloses in multiwalled carbon nanotube-dispersed medium. Carbohydr. Polym. 2009, 77, 457–463.
  • Gonçalves, P. P.; Singh, M. K.; Silva, V. S.; Marques, F.; Marques, A.; LeDuc, P. R.; Grácio, J.; Marques, P. A.; Gonçalves, G.; Sousa, A. Automated high-throughput screening of carbon nanotube-based bio-nanocomposites for bone cement applications. Pure Appl. Chem. 2011, 83, 2063–2069.
  • Lahiri, D.; Benaduce, A. P.; Rouzaud, F.; Solomon, J.; Keshri, A. K.; Kos, L.; Agarwal, A. Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon >nanotube composite coating. J. Biomed. Mater. Res. A 2011, 96, 1–12.
  • Sreekanth, P. S. R.; Reddy, N. R.; Lahkar, M.; Kanagaraj, S. Biocompatibility studies on MWCNTs reinforced ultra high molecular weight polyethylene nanocomposites. Trends Biomater. Artif. Organs 2013, 27, 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.