317
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

pH-responsive polymer in a core–shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells

ORCID Icon, , &
Pages 967-977 | Received 26 Jul 2017, Accepted 12 Nov 2017, Published online: 18 Dec 2017

References

  • Wilczewska, A. Z.; Niemirowicz, K.; Markiewicz, K. H.; Car, H. Nanoparticles as Drug Delivery Systems. Pharmacol. Rep. 2012, 64, 1020–1037.
  • Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer Res. 2008, 14(5), 1310–1316.
  • Haley, B.; Frenkel, E. Nanoparticles for Drug Delivery in Cancer Treatment. Urol. Oncol. Sem. Orig. Invest. 2008, 26(1), 57–64.
  • Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nano Drug Delivery in Reversing Multidrug Resistance in Cancer Cells. Front. Pharmacol. Pharmacol. Anti-Cancer Drugs 2014, 5(159), 1–22.
  • Mathur, V.; Satrawala, Y.; Rajput, M. S.; Kumar, P.; Shrivastava, P.; Vishvkarma, P. A. Solid Lipid Nanoparticles in Cancer Therapy. Int. J. Drug Delivery 2010, 2, 192–199.
  • Baker, J. R. Dendrimer-Based Nanoparticles for Cancer Therapy. Hematol., Am. Soc. Hematol. 2009, 2009(1), 708–719.
  • Pandey, H.; Rani, R.; Agarwal, V. Liposome and their Applications in Cancer Therapy. Braz. Arch. Biol. Technol. 2016, 59, 1–10.
  • Huang, H.; Barua, S.; Sharma, G.; Dey, S. K.; Rege, K. Inorganic Nanoparticles for Cancer Imaging and Therapy. J. Controlled Release 2011, 155, 344–357.
  • Bhattacharyya, S.; Kudgus, R. A.; Bhattacharya, R.; Mukherjee, P. Inorganic Nanoparticles in Cancer Therapy. Pharm. Res. 2011, 28(2), 237–259.
  • Parveen, S.; Sahoo, S. K. Polymeric Nanoparticles for Cancer Therapy. J. Drug Target. 2008, 16(2), 108–123.
  • Bhujbal, S. V.; de Vos, P.; Niclou, S. P. Drug and Cell Encapsulation: Alternative Delivery Options for the Treatment of Malignant Brain Tumors. Adv. Drug Delivery Rev. 2014, 67–68, 142–153.
  • Jung, Y. W.; Lee, H.; Kim, J. Y.; Koo, E. J.; Oh, K. S.; Yuk, S. H. Pluronic-Based Core/Shell Nanoparticles for Drug Delivery and Diagnosis. Curr. Med. Chem. 2013, 20(28), 3488–3499.
  • Wang, Y. Q.; Su, J.; Wu, F.; Lu, P.; Yuan, L. F.; Yuan, W. E.; Sheng, J.; Jin, T. Biscarbamate Cross-Linked Polyethylenimine Derivative with Low Molecular Weight, Low Cytotoxicity, and High Efficiency for Gene Delivery. Int. J. Nanomed. 2012, 7, 693–704.
  • Xing, H. B.; Pan, H. M.; Fang, Y.; Zhou, X. Y.; Pan, Q.; Li, D. Construction of a Tumor Cell-Targeting Non-Viral Gene Delivery Vector with Polyethylenimine Modified with RGD Sequence-Containing Peptide. Oncol. Lett. 2013, 7(2), 487–492.
  • Schleich, N.; Danhier, F.; Préat, V. Iron Oxide-Loaded Nanotheranostics: Major Obstacles to In Vivo Studies and Clinical Translation. J. Controlled Release 2015, 198, 35–54.
  • Lungu, I. I.; Radulescu, M.; Mogosanu, G. D.; Grumezescu, A. M. PH Sensitive Core–Shell Magnetic Nanoparticles for Targeted Drug Delivery in Cancer Therapy. Rom. J. Morphol. Embryol. 2016, 57(1), 23–32.
  • Yang, C.; Guo, W.; Cui, L.; An, N.; Zhang, T.; Lin, H.; Qu, F. pH-Responsive Magnetic Core–Shell Nanocomposites for Drug Delivery. Langmuir 2014, 30, 9819–9827.
  • Fan, C.; Gao, W.; Chen, Z.; Fan, H.; Li, M.; Deng, F.; Chen, Z. Tumor Selectivity of Stealth Multi-Functionalized Superparamagnetic Iron Oxide Nanoparticles. Int. J. Pharm. 2011, 404(1–2), 180–190.
  • Veiseh, O.; Gunn, J. W.; Zhang, M. Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging. Adv. Drug Delivery Rev. 2010, 62(3), 284–304.
  • Wang, C.; Zhang, H.; Chen, Y.; Shi, F.; Chen, B. Gambogic Acid-Loaded Magnetic Fe3O4 Nanoparticles Inhibit Panc-1 Pancreatic Cancer Cell Profiltration and Migration by Inactivating Transcription Factor ETS1. Int. J. Nanomed. 2012, 7, 781–787.
  • Mody, V. V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H. Magnetic Nanoparticle Drug Delivery Systems for Targeting Tumor. Appl. Nanosci. 2014, 4(4), 385–392.
  • Widder, K. J.; Senyei, A. E.; Scarpelli, D. G. Magnetic Microspheres: A Model System for Site-Specific Drug Delivery In Vivo. Proc. Soc. Exp. Biol. Med. 1978, 158(2), 141–146.
  • Philippova, O.; Barabanova, A.; Molchanov, V.; Khokhlov, A. Magnetic Polymer Beads: Recent Trends and Developments in Synthetic Design and Applications. Eur. Polym. J. 2011, 47(4), 542–559.
  • Rana, S.; Gallo, A.; Srivastava, R. S. On the Suitability of Nanocrystalline Ferrites as a Magnetic Carrier for Drug Delivery: Functionalization, Conjugation; and Drug Release Kinetics. Misra, Acta Biomater. 2007, 3(2), 233–242.
  • Santhosh Kumar, K.; Bhooshan Kumar, V.; Paik, P. Recent Advancement in Functional Core–Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology. J. Nanopart. 2013, 2013, 1–24.
  • Arias, J. L.; Gallardo, V.; Ruiz, M. A.; Delgado, A. V. Magnetite/Poly(alkylcyanoacrylate) (Core/Shell) Nanoparticles as 5-Fluorouracil Delivery Systems for Active Targeting. Eur. J. Pharm. Biopharm. 2008, 69(1):54–63.
  • Jacob, J. A.; Salmani, J. M. M.; Chen, B. Magnetic Nanoparticles: Mechanistic Studies on the Cancer Cell Interaction. Nanotechnol. Rev. 2016, 5(5), 1–17 (‘ Just Accepted’ Paper version).
  • Guo, M.; Yan, Y.; Zhang, H.; Yan, H.; Cao, Y.; Liu, K.; Wan, S.; Huang, J.; Yue, W. Magnetic and pH-Responsive Nanocarriers with Multilayer Core–Shell Architecture for Anticancer Drug Delivery. J. Mater. Chem. 2008, 18, 5104–5112.
  • Deka, S. R.; Quarta, A.; Corato, R. D.; Falqui, A.; Manna, L.; Cingolani, R.; Pellegrino, T. Acidic pH-Responsive Nanogels as Smart Cargo Systems for the Simultaneous Loading and Release of Short Oligonucleotides and Magnetic Nanoparticles. Langmuir 2010, 26(12), 10315–10324.
  • Gao, W.; Chan, J. M.; Farokhzad, O. C. pH-Responsive Nanoparticles for Drug Delivery. Mol. Pharm. 2010, 7(6), 1913–1920.
  • Bae, Y. H.; Nishiyama, N.; Fukushima, S.; Koyama, H.; Yasuhiro, M.; Kataoka, K. Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property: Tumor Permeability, Controlled Subcellular Drug Distribution, and Enhanced In Vivo Antitumor Efficacy. Bioconjugate Chem. 2005, 16(1), 122–130.
  • Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A Review of Stimuli-Responsive Nanocarriers for Drug and Gene Delivery. J. Controlled Release 2008, 126(3), 187–204.
  • Lee, E. S.; Na, K.; Bae, Y. H. Polymeric Micelle for Tumor pH and Folate-Mediated Targeting. J. Controlled Release 2003, 91(1–2), 103–113.
  • Kedar, E.; Palgi, O.; Golod, G.; Babai, I.; Barenholz, Y. Delivery of Cytokines by Liposomes. III. Liposome-Encapsulated GM-CSF and TNF-[alpha] Show Improved Pharmacokinetics and Biological Activity and Reduced Toxicity in Mice. J. Immunotherapy 1997, 20(3), 180–193.
  • Dong, D. W.; Tong, S. W.; Qi, X. R. Comparative Studies of Polyethylenimine-Doxorubicin Conjugates with pH-Sensitive and pH-Insensitive Linkers. J. Biomed. Mater. Res. A 2013, 101(5), 1336–1344.
  • Lie, S. The EBC-Ninhydrin Method for Determination of Free Alpha Amino Nitrogen. J. Inst. Brew. 1973, 79, 37–41.
  • Sun, C.; Sze, R.; Zhang, M. Folic Acid-PEG Conjugated Superparamagnetic Nanoparticles for Targeted Cellular Uptake and Detection by MRI. J. Biomed. Mater. Res. Part A 2006, 78(3), 550–557.
  • Hua, M. Y.; Yang, H. W.; Chuang C. K. Magnetic-Nanoparticle-Modified Paclitaxel for Targeted Therapy for Prostate Cancer. Biomaterials 2010, 31(28), 7355–7363.
  • Jia, Y.; Yuan, M.; Yuan, H.; Huang, X.; Sui, X. Co-encapsulation of Magnetic Fe3O4 Nanoparticles and Doxorubicin into Biodegradable PLGA Nanocarriers for Intratumoral Drug Delivery. Int. J. Nanomed. 2012, 7, 1697–1708.
  • Tomankova, K.; Polakova, K.; Pizova, K.; Binder, S.; Havrdova, M.; Kolarova, M.; Kriegova, E.; Zapletalova, J.; Malina, L.; Horakova, J.; et al. In Vitro Cytotoxicity Analysis of Doxorubicin-Loaded/Superparamagnetic Iron Oxide Colloidal Nanoassemblies on MCF-7 and NIH3T3 Cell Lines. Int. J. Nanomed. 2015, 10, 949–961.
  • Hutschenreuther, A.; Bigl, M.; Hemdan, N. Y.; A. Debebe, T.; Gaunitz, F.; Birkenmeier, G. Modulation of GLO1 Expression Affects Malignant Properties of Cells. Int. J. Mol. Sci. 2016, 2133, 1–16.
  • Barwal, I.; Kumar, R.; Kateriya, S.; Kumar Dinda, A.; Chandra Yadav, S. Targeted Delivery System for Cancer Cells Consist of Multiple Ligands Conjugated Genetically Modified CCMV Capsid on Doxorubicin GNPs Complex. Sci. Rep. 2016, 6(37096), 1–15.
  • Khanam, N.; Mikoryak, C.; Draper, R. K.; Balkus, K. J., Jr. Electrospun Linear Polyethyleneimine Scaffolds for Cell Growth. Acta Biomater. 2007, 3, 1050–1059.
  • Kasprzak, A.; Popławska, M.; Bystrzejewski, M.; Łabędź, O.; Grudziński, I. P. Conjugation of Polyethylenimine and its Derivatives to Carbon Encapsulated Iron Nanoparticles. RSC Adv. 2015, 5(104), 1–29 ( published online).
  • Sun, C.; Lee, J. S. H.; Zhang, M. Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv. Drug Delivery Rev. 2008, 60(11), 1252–1265.
  • Wahajuddin, S. A. Superparamagnetic Iron Oxide Nanoparticles: Magnetic Nanoplatforms as Drug Carriers. Int. J. Nanomed. 2012, 7, 3445–3471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.