213
Views
15
CrossRef citations to date
0
Altmetric
Articles

Sensitivity enhancement for microbial biosensors through cell Self-Coating with polypyrrole

, , & ORCID Icon
Pages 1058-1067 | Received 16 Jul 2018, Accepted 15 Sep 2018, Published online: 31 Dec 2018

References

  • Uang, Y.-M.; Chou, T.-C. Fabrication of Glucose Oxidase/Polypyrrole Biosensor by Galvanostatic Method in Various pH Aqueous Solutions. Biosens. Bioelectron 2003, 19, 141–147.
  • Wagner, G.; Guilbault, G. G. Food Biosensor Analysis, CRC Press: New York, 1993; Vol. 60.
  • Mulchandani, A.; Bassi, A. S. Principles and Applications of Biosensors for Bioprocess Monitoring and Control. Crit. Rev. Biotechnol 1995, 15, 105–124.
  • Guler, E.; Soyleyici, H. C.; Demirkol, D. O.; Ak, M.; Timur, S. A Novel Functional Conducting Polymer as an Immobilization Platform. Mater Sci Eng C Mater Biol Appl. 2014, 40, 148–156.
  • Clark, L. C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci 1962, 102, 29–45.
  • Foulds, N. C.; Lowe, C. R. Enzyme Entrapment in Electrically Conducting Polymers. Immobilisation of Glucose Oxidase in Polypyrrole and Its Application in Amperometric Glucose Sensors. J. Chem. Soc, Faraday Trans. 1 1986, 82, 1259–1264.
  • Trojanowicz, M.; Matuszewski, W.; Podsiadła, M. Enzyme Entrapped Polypyrrole Modified Electrode for Flow-Injection Determination of Glucose. Biosens. Bioelectron. 1990, 5, 149–156.
  • Rishpon, J.; Gottesfeld, S. Investigation of Polypyrrole/Glucose Oxidase Electrodes by Ellipsometric, Microgravimetric and Electrochemical Measurements. Biosens. Bioelectron. 1991, 6, 143–149.
  • Fortier, G.; Brassard, E.; Belanger, D. Optimization of a Polypyrrole Glucose Oxidase Biosensor. Biosens. Bioelectron. 1990, 5, 473–490.
  • Ramanathan, K.; Ram, M.; Malhotra, B.; Murthy, A. S. N. Application of polyaniline-Langmuir-Blodgett Films as a Glucose Biosensor. Mater. Sci. Eng. C 1995, 3, 159–163.
  • Ramanathan, K.; Sundaresan, N.; Malhotra, B. D. Ion Exchanged Polypyrrole‐Based Glucose Biosensor: Enhanced Loading and Response. Electroanalysis 1995, 7, 579–582.
  • Umana, M.; Waller, J. Protein-Modified Electrodes. The Glucose Oxidase/Polypyrrole System. Anal. Chem. 1986, 58, 2979–2983.
  • Garjonyte, R.; Malinauskas, A. Amperometric Glucose Biosensors Based on Prussian Blue- and Polyaniline-Glucose Oxidase Modified Electrodes. Biosens. Bioelectron. 2000, 15, 445–451.
  • Guisan, J. M. Immobilization of Enzymes and Cells. Springer: New York, 2006, Vol. 22.
  • Lei, Y.; Chen, W.; Mulchandani, A. Microbial Biosensors. Anal. Chim. Acta. 2006, 568, 200–210.
  • Park, M.; Tsai, S.-L.; Chen, W. Microbial Biosensors: engineered Microorganisms as the Sensing Machinery. Sensors (Basel) 2013, 13, 5777–5795.
  • Mulchandani, A.; Rogers, K. R. Enzyme and Microbial Biosensors, Humana Press: New York, 1998.
  • Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial Biosensors: A Review. Biosens. Bioelectron. 2011, 26, 1788–1799.
  • Baronian, K. The Use of Yeast and Moulds as Sensing Elements in Biosensors. Biosens. Bioelectron. 2004, 19, 953–962.
  • Campbell, T.; Hodgson, A.; Wallace, G. Incorporation of Erythrocytes into Polypyrrole to Form the Basis of a Biosensor to Screen for Rhesus (D) blood Groups and Rhesus (D) antibodies. Electroanalysis 1999, 11, 215–222.
  • D'souza, S. Immobilized Enzymes in Bioprocess. Curr. Sci 1999, 77, 69–79.
  • D’souza, S. Immobilization and Stabilization of Biomaterials for Biosensor Applications. Appl. Biochem. Biotechnol 2001, 96, 225–238.
  • Jha, S. K.; Kanungo, M.; Nath, A.; D'Souza, S. Entrapment of Live Microbial Cells in Electropolymerized Polyaniline and Their Use as Urea Biosensor. Biosens. Bioelectron 2009, 24, 2637–2642.
  • Akyilmaz, E.; Turemis, M.; Yasa, İ. Voltammetric Determination of Epinephrine by White Rot Fungi (Phanerochaete chrysosporium ME446) Cells Based Microbial Biosensor. Biosens. Bioelectron. 2011, 26, 2590–2594.
  • Yildirim, N.; Demirkol, D. O.; Timur, S. Modified Gold Surfaces with Gold Nanoparticles and 6‐(Ferrocenyl) Hexanethiol: Design of a Mediated Microbial Sensor. Electroanalysis 2015, 27, 52–57.
  • Kırgöz, Ü. A.; Odacı, D.; Timur, S.; Merkoçi, A.; Pazarlıoğlu, N.; Telefoncu, A.; Alegret, S. Graphite Epoxy Composite Electrodes Modified with Bacterial Cells. Bioelectrochemistry 2006, 69, 128–131.
  • Palmqvist, E.; Kriz, C. B.; Khayyami, M.; Danielsson, B.; Larsson, P. O.; Mosbach, K.; Kriz, D. Development of a Simple Detector for Microbial Metabolism, Based on a Polypyrrole dc Resistometric Device. Biosens. Bioelectron 1994, 9, 551–556.
  • Balci, Z.; Akbulut, U.; Toppare, L.; Alkan, S.; Bakir, U.; Yagci, Y. Immobilization of Yeast Cells in Several Conducting Polymer Matrices. J. Macromol. Sci. Part A: Pure Appl. Chem 2002, 39, 183–197.
  • Yildiz, H. B.; Kamaci, M.; Azak, H.; Secgin, O.; Suer, O. A Comparative Study: Immobilization of Yeast Cells and Invertase in Poly (Ethyleneoxide) Electrodes. J. Mol. Catal. B: Enzym 2013, 91, 52–58.
  • Fakhrullin, R. F.; Zamaleeva, A. I.; Morozov, M. V.; Tazetdinova, D. I.; Alimova, F. K.; Hilmutdinov, A. K.; Zhdanov, R. I.; Kahraman, M.; Culha, M. Living Fungi Cells Encapsulated in Polyelectrolyte Shells Doped with Metal Nanoparticles. Langmuir 2009, 25, 4628–4634.
  • Ramanavičius, A.; Kaušaitė, A.; Ramanavičienė, A. Polypyrrole-Coated Glucose Oxidase Nanoparticles for Biosensor Design. Sens. Actuators B 2005, 111-112, 532–539.
  • Ramanavicius, A.; Habermüller, K.; Csöregi, E.; Laurinavicius, V.; Schuhmann, W. Polypyrrole-Entrapped Quinohemoprotein Alcohol Dehydrogenase. Evidence for Direct Electron Transfer via Conducting-Polymer Chains. Anal. Chem. 1999, 71, 3581–3586.
  • Ionescu, R. E.; Abu, ‐Rabeah, K.; Cosnier, S.; Durrieu, C.; Chovelon, J. M.; Marks, R. S. Amperometric Algal Chlorella Vulgaris Cell Biosensors Based on Alginate and Polypyrrole‐Alginate Gels. Electroanalysis 2006, 18, 1041–1046.
  • Minett, A. I.; Barisci, J. N.; Wallace, G. G. Immobilisation of anti-Listeria in a Polypyrrole Film. React. Funct. Polym 2002, 53, 217–227.
  • Minett, A. I.; Barisci, J. N.; Wallace, G. G. Coupling Conducting Polymers and Mediated Electrochemical Responses for the Detection of Listeria. Anal. Chim. Acta 2003, 475, 37–45.
  • Gooding, J. J.; Wasiowych, C.; Barnett, D.; Hibbert, D. B.; Barisci, J. N.; Wallace, G. G. Electrochemical Modulation of Antigen-Antibody Binding. Biosens. Bioelectron. 2004, 20, 260–268.
  • Andreescu, D.; Andreescu, S.; Sadik, O. A. New Materials for Biosensors, Biochips and Molecular Bioelectronics. Compr. Anal. Chem 2005, 44, 285–327.
  • Fonner, J. M.; Forciniti, L.; Nguyen, H.; Byrne, J. D.; Kou, Y.-F.; Syeda-Nawaz, J.; Schmidt, C. E. Biocompatibility Implications of Polypyrrole Synthesis Techniques. Biomed. Mater. 2008, 3, 034124.
  • Kausaite-Minkstimiene, A.; Mazeiko, V.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of Amperometric Glucose Biosensors Based on Glucose Oxidase Encapsulated within Enzymatically Synthesized Polyaniline and Polypyrrole. Sens. Actuators B 2011, 158, 278–285.
  • Ramanavicius, A.; Kausaite, A.; Ramanaviciene, A.; Acaite, J.; Malinauskas, A. Redox Enzyme – Glucose Oxidase – Initiated Synthesis of Polypyrrole. Synth. Met 2006, 156, 409–413.
  • Kausaite, A.; Ramanaviciene, A.; Ramanavicius, A. Polyaniline Synthesis Catalysed by Glucose Oxidase. Polymer 2009, 50, 1846–1851.
  • Retama, J. R.; Mecerreyes, D.; Lopez-Ruiz, B.; Lopez-Cabarcos, E. Synthesis and Characterization of Semiconducting Polypyrrole/Polyacrylamide Microparticles with GOx for Biosensor Applications. Colloids Surf. A 2005, 270-271, 239–244.
  • Chen, C.; Jiang, Y.; Kan, J. A Noninterference Polypyrrole Glucose Biosensor. Biosens. Bioelectron 2006, 22, 639–643.
  • Fiorito, P. A.; Brett, C. M.; Torresi, S. I. C. Polypyrrole/Copper Hexacyanoferrate Hybrid as Redox Mediator for Glucose Biosensors. Talanta 2006, 69, 403–408.
  • Wang, J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis 2001, 13, 983–988.
  • German, N.; Ramanavicius, A.; Voronovic, J.; Ramanaviciene, A. Glucose Biosensor Based on Glucose Oxidase and Gold Nanoparticles of Different Sizes Covered by Polypyrrole Layer. Colloids Surf. A 2012, 413, 224–230.
  • Katrlı́k, J.; Brandšteter, R.; Švorc, J.; Rosenberg, M.;.; Miertuš, S. Mediator Type of Glucose Microbial Biosensor Based on Aspergillus niger. Anal. Chim. Acta 1997, 356, 217–224.
  • Subrahmanyam, S.; Shanmugam, K.; Subramanian, T.; Murugesan, M.; Madhav, V. M.; Jeyakumar, D. Development of Electrochemical Microbial Biosensor for Ethanol Based on Aspergillus niger. Electroanalysis 2001, 13, 944.
  • Racek, J. A Yeast Biosensor for Glucose determination. Appl. Microbiol. Biotechnol. 1991, 34, 473–477.
  • Vaitkuviene, A.; Ratautaite, V.; Mikoliunaite, L.; Kaseta, V.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Some Biocompatibility Aspects of Conducting Polymer Polypyrrole Evaluated with Bone Marrow-Derived Stem Cells. Colloids Surf. A: Physicochem. Eng. Asp 2014, 442, 152–156.
  • Vaitkuviene, A.; Kaseta, V.; Voronovic, J.; Ramanauskaite, G.; Biziuleviciene, G.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of Cytotoxicity of Polypyrrole Nanoparticles Synthesized by Oxidative Polymerization. J. Hazard. Mater 2013, 250-251, 167–174.
  • Ramanaviciene, A.; Kausaite, A.; Tautkus, S.; Ramanavicius, A. Biocompatibility of Polypyrrole Particles: an in-Vivo Study in Mice. J. Pharm. Pharmacol. 2007, 59, 311–315.
  • Andriukonis, E.; Ramanaviciene, A.; Ramanavicius, A. Synthesis of Polypyrrole Induced by [Fe(CN)6]3− and Redox Cycling of [Fe(CN)6]4−/[Fe(CN)6]3. Polymers 2018, 10, 749.
  • Ramanavicius, A.; Andriukonis, E.; Stirke, A.; Mikoliunaite, L.; Balevicius, Z.; Ramanaviciene, A. Synthesis of Polypyrrole within the Cell Wall of Yeast by Redox-Cycling of [Fe(CN)6]3-/[Fe(CN)6]4. Enzyme Microb. Technol 2016, 83, 40–47.
  • Andriukonis, E.; Stirke, A.; Garbaras, A.; Mikoliunaite, L.; Ramanaviciene, A.; Remeikis, V.; Thornton, B.; Ramanavicius, A. Yeast-Assisted Synthesis of Polypyrrole: Quantification and Influence on the Mechanical Properties of the Cell Wall. Colloids Surf B Biointerfaces 2018, 164, 224–231.
  • Song, R.-B.; Wu, YChao.; Lin, Z.-Q.; Xie, J.; Tan, C. H.; Loo, J. S. C.; Cao, B.; Zhang, J.-R.; Zhu, J.-J.; Zhang, Q. Living and Conducting: coating Individual Bacterial Cells with in Situ Formed Polypyrrole. Angew. Chem. Int. Ed. Engl. 2017, 56, 10516–10520.
  • Zhao, C-e.; Wu, J.; Kjelleberg, S.; Loo, J. S. C.; Zhang, Q. Employing a Flexible and Low‐Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells. Small 2015, 11, 3440–3443.
  • Stirke, A.; Apetrei, R.-M.; Kirsnyte, M.; Dedelaite, L.; Bondarenka, V.; Jasulaitiene, V.; Pucetaite, M.; Selskis, A.; Carac, G.; Bahrim, G.; Ramanavicius, A. Synthesis of Polypyrrole Microspheres by Streptomyces Spp. Polymer 2016, 84, 99–106.
  • Apetrei, R. M.; Carac, G.; Bahrim, G.; Ramanaviciene, A.; Ramanavicius, A. Modification of Aspergillus niger by Conducting Polymer, Polypyrrole, and the Evaluation of Electrochemical Properties of Modified Cells. Bioelectrochemistry 2018, 121, 46–55.
  • Vincke, B.; Develeeschouwer, M.; Patriarche, G. Nouveau Modèle D'électrode Enzymatique Pour la Détermination du Glucose. Applications Aux Milieux Biologiques. Analusis 1984, 12, 141–147.
  • Demirkiran, N.; Ekinci, E.; Asilturk, M. Immobilization of Glucose Oxidase in Silica Sol-Gel Film for Application to Biosensor and Amperometric Determination of Glucose. J. Chil. Chem. Soc 2012, 57, 1136–1339.
  • Liu, Z.; Liu, Y.; Yang, H.; Yang, Y.; Shen, G.; Yu, R. A Phenol Biosensor Based on Immobilizing Tyrosinase to Modified Core-Shell Magnetic Nanoparticles Supported at a Carbon Paste Electrode. Anal. Chim. Acta 2005, 533, 3–9.
  • Sung, W. J.; Bae, Y. H. Glucose Oxidase, Lactate Oxidase, and Galactose Oxidase Enzyme Electrode Based on Polypyrrole with Polyanion/PEG/Enzyme Conjugate Dopant. Sens. Actuators B 2006, 114, 164–169.
  • Sung, W. J.; Bae, Y. H. A Glucose Oxidase Electrode Based on Electropolymerized Conducting Polymer with Polyanion-Enzyme Conjugated Dopant. Anal. Chem. 2000, 72, 2177–2181.
  • Zeng, Z.; Zhou, X.; Huang, X.; Wang, Z.; Yang, Y.; Zhang, Q.; Boey, F.; Zhang, H. Electrochemical Deposition of Pt Nanoparticles on Carbon Nanotube Patterns for Glucose Detection. Analyst 2010, 135, 1726–1730.
  • Olea, D.; Viratelle, O.; Faure, C. Polypyrrole-Glucose Oxidase Biosensor. Effect of Enzyme Encapsulation in Multilamellar Vesicles on Analytical Properties. Biosens. Bioelectron. 2008, 23, 788–794.
  • Liu, X.; Neoh, K.; Cen, L.; Kang, E. Enzymatic Activity of Glucose Oxidase Covalently Wired via Viologen to Electrically Conductive Polypyrrole Films. Biosens. Bioelectron 2004, 19, 823–834.
  • Tkáč, J.; Gemeiner, P.; Švitel, J.; Benikovský, T.; Šturdı́k, E.; Vala, V. R.; Petruš, L.;.; Hrabárová, E. Determination of Total Sugars in Lignocellulose Hydrolysate by a Mediated Gluconobacter oxydans Biosensor. Anal. Chim. Acta 2000, 420, 1–7.
  • Uang, Y. M.; Chou, T. C. Criteria for Designing a Polypyrrole Glucose Biosensor by Galvanostatic Electropolymerization. Electroanalysis 2002, 14, 1564–1570.
  • Akyilmaz, E.; Dinçkaya, E. An Amperometric Microbial Biosensor Development Based on Candida tropicalis Yeast Cells for Sensitive Determination of Ethanol. Biosens. Bioelectron. 2005, 20, 1263–1269.
  • Dremel, B. A. A.; Schaffar, B. P. H.; Schmid, R. D. Determination of Glucose in Wine and Fruit Juice Based on a Fibre-Optic Glucose Biosensor and Flow-Injection Analysis. Anal. Chim. Acta 1989, 225, 293–301.
  • Boujtita, M.; Boitard, M.; El Murr, N. Development of Renewable Surface Biosensors to Meet Industrial Needs for Measurement of Glucose in Fruit Juices. Biosens. Bioelectron 1999, 14, 545–553.
  • Ozdemir, C.; Yeni, F.; Odaci, D.; Timur, S. Electrochemical Glucose Biosensing by Pyranose Oxidase Immobilized in Gold Nanoparticle-Polyaniline/AgCl/Gelatin Nanocomposite Matrix. Food Chem 2010, 119, 380–385.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.