733
Views
22
CrossRef citations to date
0
Altmetric
Articles

Alginate-poly(amino acid) extrusion printed scaffolds for tissue engineering applications

, , , , &
Pages 65-72 | Received 10 Aug 2018, Accepted 21 Oct 2018, Published online: 10 Dec 2018

References

  • Khuphe, M.; Thornton, P. D. 7- Poly(amino acids). In Engineering Biomaterials for Drug Delivery Systems Beyond polyethylene Glycol; Parambath, A., Ed., Woodhead publishing: Duxford, UK, 2018; pp 199–228.
  • Anderson, J. M.; Gibbons, D. F.; Martin, R. L.; Hiltner, A.; Woods, R. The Potential for Poly-Alpha-Amino Acids as Biomaterials. J. Biomed. Mater. Res. 1974, 8, 197–207. doi:10.1002/jbm.820080320
  • Sun, H.; Meng, F.; Dias, A. A.; Hendriks, M.; Feijen, J.; Zhong, Z. α-Amino Acid Containing Degradable Polymers as Functional Biomaterials: Rational Design, Synthetic Pathway, and Biomedical Applications. Biomacromolecules. 2011, 12, 1937–1955. doi:10.1021/bm200043u
  • Lam, J.; Clark, E. C.; Fong, E. L. S.; Lee, E. J.; Lu, S.; Tabata, Y.; Mikos, A. G. Evaluation of Cell-Laden Polyelectrolyte Hydrogels Incorporating Poly(L-Lysine) for Applications in Cartilage Tissue Engineering. Biomaterials. 2016, 83, 332–346. doi:10.1016/j.biomaterials.2016.01.020
  • Kuo, Y. C.; Ku, H. F.; Rajesh, R. Chitosan/γ-Poly(glutamic Acid) Scaffolds with Surface-Modified Albumin, Elastin and poly-L-Lysine for Cartilage Tissue Engineering. Mater. Sci. Eng. C. 2017, 78, 265–277. doi:10.1016/j.msec.2017.04.067
  • Fan, Z.; Cheng, P.; Liu, M.; Li, D.; Liu, G.; Zhao, Y.; Ding, Z.; Chen, F.; Wang, B.; Tan, X.; et al. Poly(glutamic Acid) Hydrogels Crosslinked: Via Native Chemical Ligation. New J. Chem. 2017, 41, 8656–8662. doi:10.1039/C7NJ00439G
  • Liu, C.; Liu, X.; Quan, C.; Li, X.; Chen, C.; Kang, H.; Hu, W.; Jiang, Q.; Zhang, C. Poly(γ-Glutamic Acid) Induced Homogeneous Mineralization of the Poly(ethylene Glycol)-co-2-Hydroxyethyl Methacrylate Cryogel for Potential Application in Bone Tissue Engineering. RSC Adv. 2015, 5, 20227–20233. doi:10.1039/C4RA15893H
  • Antunes, J. C.; Tsaryk, R.; Gonçalves, R. M.; Pereira, C. L.; Landes, C.; Brochhausen, C.; Ghanaati, S.; Barbosa, M. A.; Kirkpatrick, C. J. Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue engineering Part A. 2015, 21(11–12), 1869–1885.
  • Molnar, K.; Juriga, D.; Nagy, P. M.; Sinko, K.; Jedlovszky-Hajdu, A.; Zrinyi, M. Electrospun Poly(aspartic Acid) Gel Scaffolds for Artificial Extracellular Matrix. Polym. Int. 2014, 63, 1608–1615. doi:10.1002/pi.4720
  • Wang, S.; Cao, X.; Shen, M.; Guo, R.; Bányai, I.; Shi, X. Fabrication and Morphology Control of Electrospun Poly(γ-Glutamic Acid) Nanofibers for Biomedical Applications. Coll. Surf. B. Biointerfaces. 2012, 89, 254–264. doi:10.1016/j.colsurfb.2011.09.029
  • Ciucurel, E. C.; Sefton, M. V. A Poloxamine-Polylysine Acrylate Scaffold for Modular Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2011, 22, 2515–2528. doi:10.1163/092050610X541133
  • Miao, Y.; Yang, R.; Deng, D. Y. B.; Zhang, L.-M. Poly (l -Lysine) Modified Zein Nanofibrous Membranes as Efficient Scaffold for Adhesion, Proliferation, and Differentiation of Neural Stem Cells. RSC Adv. 2017, 7, 17711–17719. doi:10.1039/C7RA00189D
  • Velk, N.; Uhlig, K.; Vikulina, A.; Duschl, C.; Volodkin, D. Mobility of Lysozyme in Poly(L-Lysine)/Hyaluronic Acid Multilayer Films. Coll. Surf. B Biointerfaces. 2016, 147, 343–350. doi:10.1016/j.colsurfb.2016.07.055
  • Moroni, L.; Boland, T.; Burdick, J. A.; De Maria, C.; Derby, B.; Forgacs, G.; Groll, J.; Li, Q.; Malda, J.; Mironov, V. A.; et al. Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol. 2018, 36, 384–402. doi:10.1016/j.tibtech.2017.10.015
  • Hospodiuk, M.; Moncal, K. K.; Dey, M.; Ozbolat, I. T. Extrusion-Based Biofabrication in Tissue Engineering and Regenerative Medicine. In 3D Printing and Biofabrication; Ovsianikov, A., Yoo, J., Mironov, V., Eds.; Springer International Publishing: Cham, 2016; pp 1–27. doi:10.1007/978-3-319-40498-1_10-1.
  • Pati, F.; Jang, J.; Lee, J. W.; Cho, D.-W. Chapter 7 - Extrusion Bioprinting. In Essent. 3D Biofabrication Transl.; Atala, A., J.J.B.T.-E. of 3D B., Yoo, T., Eds.; Academic Press: Boston, 2015; pp 123–152. doi:10.1016/B978-0-12-800972-7.00007-4.
  • Ozbolat, I. T.; Hospodiuk, M. Current Advances and Future Perspectives in Extrusion-Based Bioprinting. Biomaterials. 2016, 76, 321–343. doi:10.1016/j.biomaterials.2015.10.076
  • Gelinsky, M. 6 - Biopolymer hydrogel bioinks. In 3D Bioprinting Reconstr. Surg. Tech. Appl.; Thomas, D. J., Jessop, Z. M., I.S.B.T.-3D B. for Whitaker, R. S., Eds.; Woodhead Publishing: Duxford, UK, 2018, pp 125–136. doi:10.1016/B978-0-08-101103-4.00008-9.
  • Paxton, N.; Smolan, W.; Böck, T.; Melchels, F.; Groll, J.; Jungst, T. Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability. Biofabrication. 2017, 9, 044107. doi:10.1088/1758-5090/aa8dd8.
  • Mouser, V. H. M.; Melchels, F. P. W.; Visser, J.; Dhert, W. J. A.; Gawlitta, D.; Malda, J. Yield Stress Determines Bioprintability of Hydrogels Based on Gelatin-Methacryloyl and Gellan Gum for Cartilage Bioprinting. Biofabrication. 2016, 8, 1–24. doi:10.1088/1758-5090/8/3/035003.
  • Axpe, E.; Oyen, M. L. Applications of Alginate-Based Bioinks in 3D Bioprinting. IJMS. 2016, 17, 1976. doi:10.3390/ijms17121976
  • Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. doi:10.1016/j.progpolymsci.2011.06.003
  • Jang, J.; Seol, Y. J.; Kim, H. J.; Kundu, J.; Kim, S. W.; Cho, D. W. Effects of Alginate Hydrogel Cross-Linking Density on Mechanical and Biological Behaviors for Tissue Engineering. J. Mech. Behav. Biomed. Mater. 2014, 37, 69–77. doi:10.1016/j.jmbbm.2014.05.004
  • Jia, J.; Richards, D. J.; Pollard, S.; Tan, Y.; Rodriguez, J.; Visconti, R. P.; Trusk, T. C.; Yost, M. J.; Yao, H.; Markwald, R. R.; et al. Engineering Alginate as Bioink for Bioprinting. Acta Biomater. 2014, 10, 4323–4331. doi:10.1016/j.actbio.2014.06.034
  • Yang, X.; Lu, Z.; Wu, H.; Li, W.; Zheng, L.; Zhao, J. Collagen-Alginate as Bioink for Three-Dimensional (3D) Cell Printing Based Cartilage Tissue Engineering. Mater. Sci. Eng. C. 2018, 83, 195–201. doi:10.1016/j.msec.2017.09.002
  • Armstrong, J. P. K.; Burke, M.; Carter, B. M.; Davis, S. A.; Perriman, A. W. 3D Bioprinting Using a Templated Porous Bioink. Adv. Healthcare Mater. 2016, 5, 1724–1730. doi:10.1002/adhm.201600022
  • Gao, T.; Gillispie, G. J.; Copus, J. S.; Pr, A. K.; Seol, Y.-J.; Atala, A.; Yoo, J. J.; Lee, S. J. Optimization of Gelatin–Alginate Composite Bioink Printability Using Rheological Parameters: A Systematic Approach. Biofabrication. 2018, 10, 034106. doi:10.1088/1758-5090/aacdc7
  • Li, Z.; Huang, S.; Liu, Y.; Yao, B.; Hu, T.; Shi, H.; Xie, J.; Fu, X. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Sci. Rep. 2018, 8, 1–8. doi:10.1038/s41598-018-26407-3.
  • Montalbano, G.; Toumpaniari, S.; Popov, A.; Duan, P.; Chen, J.; Dalgarno, K.; Scott, W. E.; Ferreira, A. M. Synthesis of Bioinspired Collagen/Alginate/Fibrin Based Hydrogels for Soft Tissue Engineering. Mater. Sci. Eng. C. 2018, 91, 236–246. doi:10.1016/j.msec.2018.04.101
  • Datta, S.; Sarkar, R.; Vyas, V.; Bhutoria, S.; Barui, A.; Roy Chowdhury, A.; Datta, P. Alginate-Honey Bioinks with Improved Cell Responses for Applications as Bioprinted Tissue Engineered Constructs. J. Mater. Res. 2018, 33, 2029–2039. doi:10.1557/jmr.2018.202.
  • Di Giuseppe, M.; Law, N.; Webb, B.; A. Macrae, R.; Liew, L. J.; Sercombe, T. B.; Dilley, R. J.; Doyle, B. J. Mechanical Behaviour of Alginate-Gelatin Hydrogels for 3D Bioprinting. J. Mech. Behav. Biomed. Mater. 2018, 79, 150–157. doi:10.1016/j.jmbbm.2017.12.018
  • Siddaramaiah, T. M. M. Swamy, Studies on Miscibility of Sodium Alginate/Polyethylene Glycol Blends. J. Macromol. Sci. Part A Pure Appl. Chem. 2007, 44, 321–327. doi:10.1080/10601320601077492.
  • He, Y.; Yang, F.; Zhao, H.; Gao, Q.; Xia, B.; Fu, J. Research on the Printability of Hydrogels in 3D Bioprinting. Sci. Rep. 2016, 6, 1–13. doi:10.1038/srep29977.
  • Lee, J. M.; Yeong, W. Y. A Preliminary Model of Time-Pressure Dispensing System for Bioprinting Based on Printing and Material Parameters: This Paper Reports a Method to Predict and Control the Width of Hydrogel Filament for Bioprinting Applications. Virtual Phys. Prototyp. 2015, 10, 3–8. doi:10.1080/17452759.2014.979557
  • Chawla, S.; Midha, S.; Sharma, A.; Ghosh, S. Silk-Based Bioinks for 3D Bioprinting. Adv. Healthcare Mater. 2018, 7, 1701204. doi:10.1002/adhm.201701204
  • Ragelle, H.; Tibbitt, M. W.; Wu, S. Y.; Castillo, M. A.; Cheng, G. Z.; Gangadharan, S. P.; Anderson, D. G.; Cima, M. J.; Langer, R. Surface Tension-Assisted Additive Manufacturing. Nat. Commun. 2018, 9, 1–10. doi:10.1038/s41467-018-03391-w.
  • Tam, S. K.; Dusseault, J.; Polizu, S.; Ménard, M.; Hallé, J. P.; Yahia, L. Physicochemical Model of Alginate-Poly-l-Lysine Microcapsules Defined at the Micrometric/Nanometric Scale Using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials. 2005, 26, 6950–6961. doi:10.1016/j.biomaterials.2005.05.007
  • Devidson, B.; Fasman, G. D. The Conformational Transitions of Uncharged Poly-L-Lysine. α Helix-Random Coil-β Structure*. Biochemistry. 1967, 6, 1616–1629. https://pubs.acs.org/doi/abs/10.1021/bi00858a008
  • Huanga, M. H.; Yanga, M. C. Swelling and Biocompatibility of Sodium Alginate/Poly(γ-Glutamic Acid) Hydrogels. Polym. Adv. Technol. 2010, 21, 561–567. doi:10.1002/pat.1466.
  • Leick, S.; Kemper, A.; Rehage, H. Alginate/Poly-l-Lysine Capsules: Mechanical Properties and Drug Release Characteristics. Soft Matter. 2011, 7, 6684–6694. doi:10.1039/c1sm05676j
  • Stoppel, W. L.; White, J. C.; Horava, S. D.; Henry, A. C.; Roberts, S. C.; Bhatia, S. R. Terminal Sterilization of Alginate Hydrogels: efficacy and Impact on Mechanical Properties. J. Biomed. Mater. Res. B. 2014, 102, 877–884. doi:10.1002/jbm.b.33070
  • Tabriz, A. G.; Hermida, M. A.; Leslie, N. R.; Shu, W. Three-Dimensional Bioprinting of Complex Cell Laden Alginate Hydrogel Structures. Biofabrication. 2015, 7, 45012. doi:10.1088/1758-5090/7/4/045012.
  • Burana-Osot, J.; Hosoyama, S.; Nagamoto, Y.; Suzuki, S.; Linhardt, R. J.; Toida, T. Photolytic Depolymerization of Alginate. Carbohydr. Res. 2009, 344, 2023–2027. doi:10.1016/j.carres.2009.06.027
  • San Antonio, J. D.; Jacenko, O.; Yagami, M.; Tuan, R. S. Polyionic Regulation of Cartilage Development: Promotion of Chondrogenesis in Vitro by Polylysine Is Associated with Altered Glycosaminoglycan Biosynthesis and Distribution. Dev. Biol. 1992, 152, 323–335. doi:10.1016/0012-1606(92)90139-8
  • Lorion, C.; Faye, C.; Maret, B.; Trimaille, T.; Régnier, T.; Sommer, P.; Debret, R. Biosynthetic Support Based on Dendritic Poly(L-Lysine) Improves Human Skin Fibroblasts Attachment. J. Biomater. Sci. Polym. Ed. 2014, 25, 136–149. doi:10.1080/09205063.2013.843966
  • Bin Park, S.; Hasegawa, U.; Van Der Vlies, A. J.; Sung, M. H.; Uyama, H. Preparation of Poly(γ-Glutamic Acid)/Hydroxyapatite Monolith via Biomineralization for Bone Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2014, 25, 1875–1890. doi:10.1080/09205063.2014.953404
  • McGavigan, A. The Role of Amino Acids in Appetite Regulation. Thesis, Doctor of Philosophy, Imperial College London, UK, 2013. http://hdl.handle.net/10044/1/23366
  • Miyazaki, T.; Kuramoto, A.; Hirakawa, A.; Shirosaki, Y.; Ohtsuki, C. Biomineralization on Chemically Synthesized Collagen Containing Immobilized Poly-γ-Glutamic Acid. Dent. Mater. J. 2013, 32, 544–549. doi:10.4012/dmj.2012-324
  • Wu, Z.; Su, X.; Xu, Y.; Kong, B.; Sun, W.; Mi, S. Bioprinting Three-Dimensional Cell-Laden Tissue Constructs with Controllable Degradation. Sci. Rep. 2016, 6, 24474. doi:10.1038/srep24474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.