153
Views
5
CrossRef citations to date
0
Altmetric
Articles

Integration of PLGA Microparticles in Collagen-Based Matrices: Tunable Scaffold Properties and Interaction Between Microparticles and Human Epithelial-Like Cells

, , , , , , , , & show all
Pages 137-147 | Received 28 May 2018, Accepted 23 Nov 2018, Published online: 31 Dec 2018

References

  • Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 290602, 1–19. doi:10.1155/2011/290602.
  • Dutta, R.C.; Dey, M.; Dutta, A.K.; Basu, B. Competent Processing Techniques for Scaffolds in Tissue Engineering. Biotechnol. Adv. 2017, 35, 240–250. doi:10.1016/j.biotechadv.2017.01.001.
  • Neves, L.S.; Rodrigues, M.T.; Reis, R.L.; Gomes, M.E. Current Approaches and Future Perspectives on Strategies for the Development of Personalized Tissue Engineering Therapies. Expert. Rev. Precis. Med. Drug. Dev. 2016, 1, 93–108. doi:10.1080/23808993.2016.1140004.
  • Xu, C.; Lu, W.; Bian, S.; Liang, J.; Fan, Y.; Zhang, X. Porous Collagen Scaffold Reinforced with Surfaced Activated PLLA Nanoparticles. Sci. World. J. 2012, 2012, 1–10. doi:10.1100/2012/695137.
  • Yannas, I.V. Tissue and Organ Regeneration in Adults. New York: Springer, 2001.
  • Sivan,U.; Jayakumar, K.; Krishnan, L.K. Matrix-Directed Differentiation of Human Adipose-Derived Mesenchymal Stem Cells to Dermal-Like Fibroblasts That Produce Extracellular Matrix. J. Tissue. Eng. Regen. Med. 2016, 10, E546–E558. doi:10.1002/term.1865.
  • Perniconi, B.; Coletti, D.; Aulino, P.; Costa, A.; Aprile, P.; Santacroce, L.; Chiaravallotti, E.; Coquelin, L.; Chevallier, N.; Teodori, L.; Adamo, S.; Marrelli, M.; Tatullo, M. Muscle Acellular Scaffold as a Biomaterial:Effects on C2C12 Cell Differentiation and Interaction with the Murine Host Environment. Front. Physiol. 2014, 5, 354. doi:10.3389/fphys.2014.00354
  • Aulino, P.; Costa, A.; Chiaravallotti, E.; Perniconi, B.; Adamo, S.; Coletti, D.; Marrelli, M.; Tatullo, M.; Teodori, L. Muscle Extracellular Matrix Scaffold is a Multipotent Environment. Int. J. Med. Sci. 2015, 12, 336–340. doi:10.7150/ijms.10761.
  • Elmashhady, H. H.; Kraemer, B. A.; Patel, K. H.; Sell, S. A.; Garg, K. Decellularized Extracellular Matrices for Tissue Engineering Applications. Electrospinning 2017, 1, 87–99. doi:10.1515/esp-2017-0005
  • Lin, H. K.; Godiwalla, S. Y.; Palmer, B.; Frimberger, D.; Yang, Q.; Madihally, S. V.; Fung, K. M.; Kropp, B. P. Understanding Roles of Porcine Small Intestinal Submucosa in Urinary Bladder Regeneration: Identification of Variable Regenerative Characteristics of Small Intestinal Submucosa. Tissue. Eng. Part. B. Rev. 2014, 20, 73–83. doi:10.1089/ten.teb.2013.0126.
  • Inchingolo, F.; Tatullo, M.; Marrelli, M.; Inchingolo, A. M.; Inchingolo, A. D.; Dipalma, G.; Flace, P.; Girolamo, F.; Tarullo, A.; Laino, L.; et al. Regenerative Surgery Performed with Platelet-Rich Plasma Used in Sinus Lift Elevation Before Dental Implant Surgery: An Useful Aid in Healing and Regeneration of Bone Tissue. Eur. Rev. Med. Pharmacol. Sci. 2012; 16, 1222–1226.
  • Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and Biocompatible Polymers for Tissue Engineering Application: A Review. Artif. Cell. Nanomed. B. 2017, 45, 185–192. doi:10.3109/21691401.2016.1146731.
  • Glowacki, J.; Mizuno, S. Collagen Scaffolds for Tissue Engineering. Biopolymers. 2007, 89, 338–344. doi:10.1002/bip.20871.
  • Giampetruzzi, L.; Blasi, L.; Quarta, A.; Argentiere, S.; Cella, C.; Salvatore, L.; Madaghiele, M.; Gigli, G.; Sannino, A. Poly (Lactide-co-glycolide) Nanoparticles Embedded in a Micro-Patterned Collagen Scaffold for Neuronal Tissue Regeneration. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 359–368. doi:10.1080/00914037.2016.1217533.
  • O’Neill, H.S.; O’Sullivan, J.; Porteous, N.; Ruiz-Hernandez, E.; Kelly, H.M.; O’Brien, F.J.; Duffy, G.P. A Collagen Cardiac Patch Incorporating Alginate Microparticles Permits the Controlled Release of Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to Enhance Cardiac Stem Cell Migration and Proliferation. J. Tissue. Eng. Regen. Med. 2018, 12, e384–e394. doi:10.1002/term.2392.
  • Quinlan, E.; López-Noriega, A.; Thompson, E.; Kelly, H.M.; Cryan S.A.; O’Brien, F.J. Development of Collagen-Hydroxyapatite Scaffolds Incorporating PLGA and Alginate Microparticles for the Controlled Delivery of rhBMP-2 for Bone Tissue Engineering. J. Control. Release. 2015, 198, 71–79.doi:10.1016/j.jconrel.2014.11.021.
  • Ungaro, F.; Biondi, M.; d’Angelo, I.; Indolfi, L.; Quaglia, F.; Netti, P.A.; La Rotonda, M.I. Microsphere-Integrated Collagen Scaffolds for Tissue Engineering: Effect of Microsphere Formulation and Scaffold Properties on Protein Release Kinetics. J. Control. Release. 2006, 113, 128–136. doi:10.1016/j.jconrel.2006.04.011.
  • Tan, H.; Wu, J.; Lao, L.; Gao, C. Gelatin/Chitosan/Hyaluronan Scaffold Integrated with PLGA Microspheres for Cartilage Tissue Engineering. Acta. Biomater. 2009, 5, 328–337. doi:10.1016/j.actbio.2008.07.030.
  • Bettini, S.; Bonfrate, V.; Syrgiannis, Z.; Sannino, A.; Salvatore, L.; Madaghiele, M.; Valli, L.; Giancane, G. Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release. Biomacromolecules. 2015, 16, 2599–2608. doi:10.1021/acs.biomac.5b00829.
  • Bettini, S.; Bonfrate, V.; Madaghiele, M.; Salvatore, L.; Syrgiannis, Z.; Giancane, G.; Valli, L. On‐Demand Release of Hydrosoluble Drugs from a Paramagnetic Porous Collagen‐Based Scaffold. Chem-Eur. J. 2017, 23, 1338–1345. doi:10.1002/chem.201603210.
  • Bonfrate, V., Manno, D., Serra, A.; Salvatore, L.; Sannino, A., Buccolieri, A.; Serra, T.; Giancane, G. Enhanced Electrical Conductivity of Collagen Films Through Long-Range Aligned Iron Oxide Nanoparticles. J. Colloid. Interf. Sci. 2017, 501, 185–191. doi:10.1016/j.jcis.2017.04.067.
  • Panyam, J.; Labhasetwar, V. Biodegradable Nanoparticles for Drug and Gene Delivery to Cells and Tissue. Adv. Drug. Deliver. Rev. 2003, 55, 329–347. doi:10.1016/S0169-409X(02)00228-4.
  • Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for Drug Delivery: The Need for Precision in Reporting Particle Size Parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9. doi:10.1016/j.ejpb.2007.08.001.
  • Gaumet, M.; Gurny, R.; Delie, F. Localization and Quantification of Biodegradable Particles in an Intestinal Cell Model: The Influence of Particle Size. Eur. J. Pharm. Sci. 2009, 36, 465–473. doi:10.1016/j.ejps.2008.11.015.
  • Li, A. D.; Sun, Z.Z.; Zhou, M; Xu, X. X.; Ma, J. Y.; Zheng, W.; Zhoua, H. M.; Li, L.; Zheng, Y. F. Electrospun Chitosan-Graft-PLGA Nanofibres with Significantly Enhanced Hydrophilicity and Improved Mechanical Property. Colloid. Surface. B. 2013, 102, 674–681. doi:10.1016/j.colsurfb.2012.09.035.
  • Carr, K. E.; Smyth, S. H.; McCullough, M. T.; Morris, J. F.; Moyes, S. M. Morphological Aspects of Interactions Between Microparticles and Mammalian Cells: Intestinal Uptake and Onward Movement. Prog. Histochem. Cytochem. 2012, 46, 185–252. doi:10.1016/j.proghi.2011.11.001.
  • Gonçalves, V. S., Gurikov, P.; Poejo, J.; Matias, A. A.; Heinrich, S.; Duarte, C. M.; Smirnova, I. Alginate-Based Hybrid Aerogel Microparticles for Mucosal Drug Delivery. Eur. J. Pharm. Biopharm. 2016, 107, 160–170. doi:10.1016/j.ejpb.2016.07.003.
  • Sarrate, R.; Ticó, J. R.; Miñarro, M.; Carrillo, C.; Fàbregas, A.; García-Montoya, E. Pérez-Lozano P.; Suñé-Negre, J. M. Modification of the Morphology and Particle Size of Pharmaceutical Excipients by Spray Drying Technique. Powder. Technol. 2015, 270, 244–255. doi:10.1016/j.powtec.2014.08.021.
  • O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The Effect of Pore Size on Cell Adhesion in Collagen-GAG Scaffolds. Biomaterials. 2005, 26, 433–441. doi:10.1016/j.biomaterials.2004.02.052.
  • Damink, L. O.; Dijkstra, P. J.; Van Luyn, M. J. A., Van Wachem, P. B.; Nieuwenhuis, P.; Feijen, J. Cross-Linking of Dermal Sheep Collagen Using a Water-Soluble Carbodiimide. Biomaterials. 1996, 17, 765–773. doi:10.1016/0142-9612(96)81413-X.
  • Madaghiele, M.; Sannino, A.; Yannas, I. V.; Spector, M. Collagen‐Based Matrices with Axially Oriented Pores. J. Biomed. Mater. Res. A. 2008, 85, 757–767. doi:10.1002/jbm.a.31517.
  • Monaco, G.; Cholas, R.; Salvatore L., Madaghiele, M.; Sannino, A. Sterilization of Collagen Scaffolds Designed for Peripheral Nerve Regeneration: Effect on Microstructure, Degradation and Cellular Colonization. Mater. Sci. Eng. C. 2017, 71, 335–344. doi:10.1016/j.msec.2016.10.030.
  • Schmittgen, T. D.; Livak, K. J. Analyzing Real-Time PCR Data by the Comparative C(T) Method. Nat. Protoc.. 3 2008, 1101–1108. doi:10.1038/nprot.2008.73.
  • Salvatore, L., Madaghiele, M.; Parisi, C., Gatti, F.; Sannino, A. Crosslinking of Micropatterned Collagen-Based Nerve Guides to Modulate the Expected Half-Life. J. Biomed. Mater. Res. A. 2014, 102, 4406–4414. https://doi.org/10.1002/jbm.a.35124
  • León-Mancilla, B. H.; Araiza-Téllez, M. A.; Flores-Flores, J. O.; Piña-Barba, M. C. Physico-Chemical Characterization of Collagen Scaffolds for Tissue Engineering. J. Appl. Res. Technol. 2016, 14, 77–85. doi:10.1016/j.jart.2016.01.001.
  • Pereira, E. D.; Cerruti, R.; Fernandes, E.; Peña, L.; Saez, V.; Pinto, J. C.; Ramón, J. A.; Oliveira, G. E.; Souza Júnior, F. G. D. Influence of PLGA and PLGA-PEG on the Dissolution Profile of Oxaliplatin. Polímeros. 2016, 26, 137–143. doi:10.1590/0104-1428.2323.
  • Iafisco, M.; Foltran, I.; Sabbatini, S.; Tosi, G.; Roveri, N. Electrospun Nanostructured Fibers of Collagen-Biomimetic Apatite on Titanium Alloy. Bioinorg. Chem. Appl, 2012, 1–8. doi:10.1155/2012/123953.
  • Adhikari, A. R.; Rusakova, I.; Haleh, A.; Luisi, J.; Panova, N. I.; Laezza, F.; Chu, W. K. Thermal Property and Assessment of Biocompatibility of Poly (Lactic-co-Glycolic) Acid/Graphene Nanocomposites. J. Appl. Phys. 2014, 115, 054701. doi:10.1063/1.4864263.
  • Jose, M. V.; Thomas, V.; Dean, D. R.; Nyairo, E. Fabrication and Characterization of Aligned Nanofibrous PLGA/Collagen Blends as Bone Tissue Scaffolds. Polymer. 2009, 50, 3778–3785. doi:10.1016/j.polymer.2009.05.035.
  • Maciel, V. B. V.; Yoshida, C. M. P.; Pereira, S. M. S. S.; Goycoolea, F. M.; Franco, T. T. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules. 2017, 22, 1707. doi:10.3390/molecules22101707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.