148
Views
3
CrossRef citations to date
0
Altmetric
Articles

AgNPs loaded microemulsion using gallic acid inhibits MCF-7 breast cancer cell line and solid ehrlich carcinoma

, &
Pages 292-316 | Received 11 Sep 2018, Accepted 09 Dec 2018, Published online: 22 Jan 2019

References

  • McLeod, H. L.; Evans, W. E. Oral Cancer Chemotherapy: The Promise and the Pitfalls. Clin. Cancer Res. 1999, 5, 2669–2671. https://www.ncbi.nlm.nih.gov/pubmed/10537326
  • Yin Win, K.; Feng, S. S. Effects of Particle Size and Surface Coating on Cellular Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs. Biomaterials 2005, 26, 2713–2722. doi:10.1016/j.biomaterials.2004.07.050.
  • Shapero, K.; Fenaroli, F.; Lynch, I.; Cottell, D. C.; Salvati, A.; Dawson, K. A. Time and Space Resolved Uptake Study of Silicananoparticles by Human Cells. Mol. BioSyst. 2011, 7, 371–378. doi:10.1039/c0mb00109k
  • Sun, S. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. AAAScience 2000, 287, 1989–1992. doi:10.1126/science.287.5460.1989.
  • Malik, P.; Shankar, R.; Malik, V.; Sharma, N.; Mukherjee, T. K. Green Chemistry Based Benign Routes for Nanoparticle Synthesis. J. Nanoparticles 2014, 2014, 1–14. doi:10.1155/2014/302429.
  • Wang, J. Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires. AAAScience 2001, 293, 1455–1457. doi:10.1126/science.1062340.
  • Zhang, W.; Qiao, X.; Chen, J.; Wang, H. Preparation of Silver Nanoparticles in Water-in-Oil AOT Reverse Micelles. J. Colloid Interface Sci. 2006, 302, 370–373. doi:10.1016/j.jcis.2006.06.035.
  • Capek, I. Preparation of Metal Nanoparticles in Water-in-Oil (w/o) Microemulsions. Adv. Colloid Interface Sci. 2004, 110, 49–74. doi:10.1016/j.cis.2004.
  • Solanki, J. N.; Murthy, Z. V. P. Controlled Size Silver Nanoparticles Synthesis with Water-in-Oil Microemulsion Method: A Topical Review. Ind. Eng. Chem. Res. 2011, 50, 12311–12323. doi:10.1021/ie201649x.
  • Pileni, M. P. The Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals. Nat. Mater. 2003, 2, 145–150. doi:10.1038/nmat817.
  • Barnickel, P.; Wokaun, A. Synthesis of Metal Colloids in Inverse Microemulsions. Mol. Phys. 1990, 69, 1–9. doi:10.1080/00268979000100011.
  • Eastoe, J.; Hollamby, M. J.; Hudson, L. Recent Advances in Nanoparticle Synthesis with Reversed Micelles. Adv. Colloid Interface Sci. 2006, 128–130, 5–15. doi:10.1016/j.cis.2006.11.009.
  • Singha, D.; Barman, N.; Sahu, K. A Facile Synthesis of High Optical Quality Silver Nanoparticles by Ascorbic Acid Reduction in Reverse Micelles at Room Temperature. J. Colloid Interface Sci. 2014, 413, 37–42. doi:10.1016/j.jcis.2013.09.009.
  • Feng, A.; Wu, S.; Chen, S.; Zhang, H.; Shao, W.; Xiao, Z. Synthesis of Silver Nanoparticles with Tunable Morphologies via a Reverse Nano-Emulsion Route. Mater. Trans. 2013, 54, 1145–1148. doi:10.2320/matertrans.m2013005.
  • Kumar, N.; Shishu. D-optimal Experimental Approach for Designing Topical Microemulsion of Itraconazole: Characterization and Evaluation of Antifungal Efficacy against a Standardized Tinea Pedis Infection Model in Wistar Rats. Eur. J. Pharmaceut. Sci. 2015, 67, 97–112. doi:10.1016/j.ejps.2014.10.014
  • Barot, B. S.; Parejiya, P. B.; Patel, H. K.; Gohel, M. C.; Shelat, P. K. Microemulsion-Based Gel of Terbinafine for the Treatment of Onychomycosis: Optimization of Formulation Using D-Optimal Design. AAPS PharmSciTech 2012, 13, 184–192. doi:10.1208/s12249-011-9742-7.
  • Krishnaraj, C.; Jagan, E. G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P. T.; Mohan, N. Synthesis of Silver Nanoparticles Using Acalypha Indica Leaf Extracts and Its Antibacterial Activity Against Water Borne Pathogens. Colloids Surf. B: Biointerfaces 2010, 76, 50–56. doi:10.1016/j.colsurfb.2009.10.008.
  • El-Naggar, N. E. A.; Hussein, M. H.; El-Sawah, A. A. Bio-fabrication of Silver Nanoparticles by Phycocyanin, characterization, in Vitro Anticancer Activity against Breast Cancer Cell Line and in Vivo Cytotxicity. Sci. Rep. 2017, 7, 10844. doi:10.1038/s41598-017-11121-3
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. doi:10.1088/0957-4484/16/10/059.
  • Greulich, C.; Diendorf, J.; Simon, T.; Eggeler, G.; Epple, M.; Köller, M. Uptake and Intracellular Distribution of Silver Nanoparticles in Human Mesenchymal Stem Cells. Acta Biomater. 2011, 7, 347–354. doi:10.1016/j.actbio.2010.08.003.
  • Ke, W.-T.; Lin, S.-Y.; Ho, H.-O.; Sheu, M.-T. Physical Characterizations of Microemulsion Systems Using Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS) as a Surfactant for the Oral Delivery of Protein Drugs. J. Control. Rel. 2005, 102, 489–507. doi:10.1016/j.jconrel.2004.10.030.
  • Wang, Y.; Duan, L.; Cheng, S.; Chai, B.; Han, F. Water/i‐Propanol/n‐Butanol Microemulsions. J. Dispersion Sci. Technol. 2008, 29, 280–283. doi:10.1080/01932690701707613.
  • Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E. Prediction of Fresh and Hardened State Properties of UHPC: Comparative Study of Statistical Mixture Design and an Artificial Neural Network Model. J. Mater. Civ. Eng. 2015, 27, 04015017. doi:10.1061/(asce)mt.1943-5533.0001270.
  • Samson, S.; Basri, M.; Fard Masoumi, H. R.; Abedi Karjiban, R.; Abdul Malek, E. Design and Development of a Nanoemulsion System Containing Copper Peptide by D-optimal Mixture Design and Evaluation of Its Physicochemical Properties. RSC Adv. 2016, 6, 17845–17856. doi:10.1039/c5ra24379c.
  • Ngan, C. L.; Basri, M.; Lye, F. F.; Fard Masoumi, H. R.; Tripathy, M.; Abedi Karjiban, R.; Abdul-Malek, E. Comparison of Box–Behnken and Central Composite Designs in Optimization of Fullerene Loaded Palm-based Nano-emulsions for Cosmeceutical Application. Ind. Crops Prod. 2014, 59, 309–317. doi:10.1016/j.indcrop.2014.05.042.
  • Thakkar, P. J.; Madan, P.; Lin, S. Transdermal Delivery of Diclofenac Using Water-in-Oil Microemulsion: formulation and Mechanistic Approach of Drug Skin Permeation. Pharmaceut. Dev. Technol. 2014, 19, 373–384. doi:10.3109/10837450.2013.788658.
  • Valodkar, M.; Nagar, P. S.; Jadeja, R. N.; Thounaojam, M. C.; Devkar, R. V.; Thakore, S. Euphorbiaceae Latex Induced Green Synthesis of Non-cytotoxic Metallic Nanoparticle Solutions: A Rational Approach to Antimicrobial Applications. Colloids Surf. A: Physicochem. Eng. Aspects 2011, 384, 337–344. doi:10.1016/j.colsurfa.2011.04.015.
  • Kareem, S.; Akpan, I.; Ojo, O. Antimicrobial Activities of Calotropis Procera on Selected Pathogenic Microorganisms. Afr. J. Biomed. Res. 2010, 11, 105–1110. doi:10.4314/ajbr.v11i1.50674
  • Uma Suganya, K. S.; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D, Arulvasu, C.; Stalin Dhas, T, Karthick, V.; Changmai, N. Anti-proliferative Effect of Biogenic Gold Nanoparticles Against Breast Cancer Cell Lines (MDA-MB-231 MCF-7). Appl. Surf. Sci. 2016, 371, 415–424. doi:10.1016/j.apsusc.2016.03.004.
  • Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. doi:10.1016/0022-1759(83)90303-4.
  • Vennapusa, N. R.; Nagarathna, P. K.; Divya, M. A Study on the Survival Time Sex, Weight and Blood Content of the Ehrlich Ascites Carcinoma Involved Tumour. Int. J. Pharmacol. Res 2013, 3, 27–35. doi:10.7439/ijpr.v3i2.44.
  • Kumar, N.; Dhamija, I.; Vasanth Raj, P.; Jayashree, B. S.; Parihar, V.; Manjula, S. N.; Thomas, S.; Gopalan Kutty, N.; Rao, M. C. Preliminary Investigation of Cytotoxic Potential of 2-quinolone Derivatives Using in Vitro and in Vivo (Solid Tumor and Liquid Tumor) Models of Cancer. Arabian J. Chem. 2014, 7, 409–417. doi:10.1016/j.arabjc.2012.12.029.
  • Jaganathan, S. K.; Mondhe, D.; Wani, Z. A.; Pal, H. C.; Mandal, M. Effect of Honey and Eugenol on Ehrlich Ascites and Solid Carcinoma. J. Biomed. Biotechnol. 2010, 2010, 1–5. doi:10.1155/2010/989163.
  • Choudhury, H.; Gorain, B.; Tekade, R. K.; Pandey, M.; Karmakar, S.; Pal, T. K. Safety Against Nephrotoxicity in Paclitaxel Treatment: Oral Nanocarrier as an Effective Tool in Preclinical Evaluation with Marked in Vivo Antitumor Activity. Regul. Toxicol. Pharmacol. 2017, 91, 179–189. doi:10.1016/j.yrtph.2017.10.023.
  • Dasgupta, D.; Dash, S. Evaluation of in Vivo Anticancer and Immunostimulatory Activity of Flowers of Mimosa Pudica Linn. (Fabaceae). Asian J. Pharm. Clin. Res. 2017, 10, 266. doi:10.22159/ajpcr.2017.v10i7.18514.
  • Nair, G. G.; Nair, C. K. K. Radioprotective Effects of Gallic Acid in Mice. BioMed Res. Int. 2013, 2013, 1–13. doi:10.1155/2013/953079.
  • Kakumanu, S.; Tagne, J. B.; Wilson, T. A.; Nicolosi, R. J. A Nanoemulsion Formulation of Dacarbazine Reduces Tumor Size in a Xenograft Mouse Epidermoid Carcinoma Model Compared to Dacarbazine Suspension. Nanomed. 2011, 7, 277–283. doi:10.1016/j.nano.2010.12.002.
  • Kumar, S. S.; Krishna Ra, M. R.; Balasubram, M. P. Chemopreventive Effects of Indigofera Aspalathoides on 20-Methylcholanthrene Induced Fibrosarcoma in Rats. Int. J. Cancer Res. 2011, 7, 144–151. doi:10.3923/ijcr.2011.144.151.
  • Tesana, S.; Takahashi, Y.; Sithithaworn, P.; Ando, K.; Sakakura, T.; Yutanawiboonchai, W.; Pairojkul, C.; Ruangjirachuporn, W. Ultrastructural and Immunohistochemical Analysis of Cholangiocarcinoma in Immunized Syrian Golden Hamsters Infected with Opisthorchis viverrini and Administered with Dimethylnitrosamine. Parasitol. Int. 2000, 49, 239–251. doi:10.1016/s1383-5769(00)00052-0.
  • Nahata, T.; Saini, T. R. D-Optimal Designing and Optimization of Long Acting Microsphere-Based Injectable Formulation of Aripiprazole. Drug Devel. Ind. Pharm. 2008, 34, 668–675. doi:10.1080/03639040701836545.
  • Baş, D.; Boyacı, İH. Modeling and Optimization I: Usability of Response Surface Methodology. J. Food Eng. 2007, 78, 836–845. doi:10.1016/j.jfoodeng.2005.11.024.
  • Jeirani, Z.; Mohamed Jan, B.; Si Ali, B.; Mohd. Noor, I.; Chun Hwa, S.; Saphanuchart, W. The Optimal Mixture Design of Experiments: Alternative Method in Optimizing the Aqueous Phase Composition of a Microemulsion. Chemometrics Intell. Lab. Syst. 2012, 112, 1–7. doi:10.1016/j.chemolab.2011.10.008.
  • Hanchinal, V. M.; Survase, S. A.; Sawant, S. K.; Annapure, U. S. Response Surface Methodology in Media Optimization for Production of β-Carotene from Daucus Carota. Plant Cell. Tiss. Organ Cult. 2008, 93, 123–132. doi:10.1007/s11240-008-9350-8.
  • Box, G. E. P.; Draper, N. R. Empirical Model-Building and Response Surfaces; Wiley and Sons: New York, 1987; pp. 1–3.
  • Kumar, R.; Kumar, S.; Sinha, V. R. Evaluation and Optimization of Water-in-Oil Microemulsion Using Ternary Phase Diagram and Central Composite Design. J. Dispersion Sci. Technol. 2016, 37, 166–172. doi:10.1080/01932691.2015.1038351.
  • Da Costa, S.; Basri, M.; Shamsudin, N.; Basri, H. Stability of Positively Charged Nanoemulsion Formulation Containing Steroidal Drug for Effective Transdermal Application. J. Chem. 2014, 2014, 1–8. doi:10.1155/2014/748680.
  • Ma, S.; Chen, F.; Ye, X.; Dong, Y.; Xue, Y.; Xu, H.; Zhang, W.; Song, S.; Ai, L.; Zhang, N.; Pan, W. Intravenous Microemulsion of Docetaxel Containing an Anti-tumor Synergistic Ingredient (Brucea Javanica Oil): Formulation and Pharmacokinetics. Int. J. Nanomed. 2013, 8, 4045. doi:10.2147/ijn.s47956
  • Theivasanthi, T.; Alagar, M. Konjac Biomolecules Assisted–Rod/Spherical Shaped Lead Nano Powder Synthesized by Electrolytic Process and Its Characterization Studies. Nano Biomed. Eng. 2013, 5, 11–19. doi:10.5101/nbe.v5i1.p11-19
  • Wang, W.; Chen, Q.; Jiang, C.; Yang, D.; Liu, X.; Xu, S. One-Step Synthesis of Biocompatible Gold Nanoparticles Using Gallic Acid in the Presence of Poly-(N-Vinyl-2-Pyrrolidone). Colloids Surf. A: Physicochem. Eng. Aspects. 2007, 301, 73–79. doi:10.1016/j.colsurfa.2006.12.037.
  • Silva, A. E.; Barratt, G.; Chéron, M.; Egito, E. S. T. Development of Oil-in-water Microemulsions for the Oral Delivery of Amphotericin B. Int. J. Pharmaceut. 2013, 454, 641–648. doi:10.1016/j.ijpharm.2013.05.044.
  • Elbaz, N. M.; Ziko, L.; Siam, R.; Mamdouh, W. Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy Against Breast Cancer in-Vitro. Sci. Rep. 2016, 6, 30729. doi:10.1038/srep30729
  • Ofokansi, K. C.; Adikwu, M. U.; Okore, V. C. Preparation and Evaluation of Mucin-Gelatin Mucoadhesive Microspheres for Rectal Delivery of Ceftriaxone Sodium. Drug Dev. Ind. Pharm. 2007, 33, 691–700. doi:10.1080/03639040701360876.
  • Kuksal, A.; Tiwary, A. K.; Jain, N. K.; Jain, S. Formulation and in Vitro, in Vivo Evaluation of Extended- Release Matrix Tablet of Zidovudine: Influence of Combination of Hydrophilic and Hydrophobic Matrix Formers. AAPS PharmSciTech 2006, 7, 1–9. doi:10.1208/pt070101
  • Guzman, M.; Dille, J.; Godet, S. Synthesis and Antibacterial Activity of Silver Nanoparticles Against Gram-Positive and Gram-Negative Bacteria. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 37–45. doi:10.1016/j.nano.2011.05.007.
  • Sreelatha, S.; Padma, P. R.; Umasankari, E. Evaluation of Anticancer Activity of Ethanol Extract of Sesbania Grandiflora (Agati Sesban) Against Ehrlich Ascites Carcinoma in Swiss Albino Mice. J. Ethnopharmacol. 2011, 134, 984–987. doi:10.1016/j.jep.2011.01.012.
  • Hashem, M. A.; Mohammed, H. M.; Magda, S. H. Clinicopathological, Pathological and Biophysical Studies on the Effect of Electromagnetic Field on the Ehrlich Tumor Cells Implanted in Mice. Egypt. J. Comp. Clin. Pathol. 2004, 17, 117–147.
  • Salem, M. L.; Shoukry, N. M.; Teleb, W. K.; Abdel-Daim, M. M.; Abdel-Rahman, M. A. In Vitro and in Vivo Antitumor Effects of the Egyptian Scorpion Androctonus Amoreuxi Venom in an Ehrlich Ascites Tumor Model. SpringerPlus 2016, 5, 570. doi:-10.1186/s40064-016-2269-3
  • Navarro, J.; Obrador, E.; Carretero, J.; Petschen, I.; Aviñó, J.; Perez, P.; Estrela, J. M. Changes in Glutathione Status and the Antioxidant System in Blood and in Cancer Cells Associate with Tumour Growth in Vivo. Free Radic. Biol. Med. 1999, 26, 410–418. doi:10.1016/s0891-5849(98)00213-5.
  • Kapoor, R.; Gundpatil, D. B.; Somani, B. L.; Saha, T. K.; Bandyopadhyay, S.; Misra, P. Anticancer Effect of dl-Glyceraldehyde and 2-Deoxyglucose in Ehrlich Ascites Carcinoma Bearing Mice and Their Effect on Liver, Kidney and Haematological Parameters. Ind. J. Clin. Biochem. 2014, 29, 213–220. doi:10.1007/s12291-013-0343-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.