638
Views
9
CrossRef citations to date
0
Altmetric
Articles

Superhydrophobic blood-compatible surfaces: state of the art

Pages 363-372 | Received 04 Sep 2018, Accepted 13 Jan 2019, Published online: 03 Feb 2019

References

  • Salimi, E.; Ghaee, A.; Ismail, A. F.; Othman, M. H. D.; Sean, G. P. Current Approaches in Improving Hemocompatibility of Polymeric Membranes for Biomedical Application. Macromol. Mater. Eng. 2016, 301, 771–800. doi:10.1002/mame.201600014.
  • Walczak, J.; Shahgaldi, F.; Heatley, F. In vivo corrosion of 316L Stainless-Steel Hip Implants: Morphology and Elemental Compositions of Corrosion Products. Biomaterials. 1998, 19:229–237. doi:10.1016/S0142-9612(97)00208-1.
  • Ahmed, M.; Lai, B. F. L.; Kizhakkedathu, J. N.; Narain, R. Hyperbranched Glycopolymers for Blood Biocompatibility. Bioconjug. Chem. 2012, 23, 1050–1058. doi:10.1021/bc3000723.
  • Kainthan, R. K.; Gnanamani, M.; Ganguli, M.; Ghosh, T.; Brooks, D. E.; Maiti, S.; Kizhakkedathu, J. N. Blood Compatibility of Novel Water Soluble Hyperbranched Polyglycerol-Based Multivalent Cationic Polymers and Their Interaction with DNA. Biomaterials. 2006, 27, 5377–5390. doi:10.1016/j.biomaterials.2006.06.021.
  • Lai, B. F.; Zou, Y.; Yang, X.; Yu, X.; Kizhakkedathu, J. N. Abnormal Blood Clot Formation Induced by Temperature Responsive Polymers by Altered Fibrin Polymerization and Platelet Binding. Biomaterials. 2014; 35, 2518–2528. doi:10.1016/j.biomaterials.2013.12.003.
  • Tang, L.; Thevenot, P.; Hu, W. Surface Chemistry Influences Implant Biocompatibility. Curr. Top. Med. Chem. 2008; 8, 270–280. doi:10.2174/156802608783790901.
  • Bridges, A. W.; García, A. J. Anti-inflammatory Polymeric Coatings for Implantable Biomaterials and Devices. J. Diabetes Sci. Technol. 2008, 2, 984–994. doi:10.1177/193229680800200628.
  • Fadeeva, E.; Deiwick, A.; Chichkov, B.; Schlie-Wolter, S. Impact of Laser-Structured Biomaterial Interfaces on Guided Cell Responses. Interface Focus. 2014, 4, 20130048. doi:10.1098/rsfs.2013.0048.
  • Khorasani, M.; Mirzadeh, H. In Vitro Blood Compatibility of Modified PDMS Surfaces as Superhydrophobic and Superhydrophilic Materials. J. Appl. Polym. Sci. 2004, 91, 2042–2047. doi:10.1002/app.13355.
  • Bakir, M. Haemocompatibility of Titanium and Its Alloys. J. Biomater. Appl. 2012, 27, 3–15. doi:10.1177/0885328212439615.
  • Portugal, C. A.; Truckenmüller, R.; Stamatialis, D.; et al. Effect of Tissue Scaffold Topography on Protein Structure Monitored by Fluorescence Spectroscopy. J. Biotechnol. 2014, 189, 166–174. doi:10.1016/j.jbiotec.2014.09.009.
  • Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Super-Water-Repellent Fractal Surfaces. Langmuir. 1996, 12, 2125–2127. doi:10.1021/la950418o.
  • Nakajima, A.; Hashimoto, K.; Watanabe, T. Recent Studies on Super-Hydrophobic Films. Monatshefte für Chemie/Chemical Monthly. 2001, 132, 31–41. doi:10.1007/s007060170142.
  • Asmatulu, R.; Ceylan, M.; Nuraje, N. Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems. Langmuir. 2010, 27, 504–507. doi:10.1021/la103661c.
  • Alves, N. M.; Shi, J.; Oramas, E.; Santos, J. L.; Tomás, H.; Mano, J. F. Bioinspired Superhydrophobic Poly (L‐lactic acid) Surfaces Control Bone Marrow Derived Cells Adhesion and Proliferation. J. Biomed. Mater. Res. A. 2009, 91, 480–488.
  • Tadanaga, K.; Kitamuro, K.; Matsuda, A.; Minami, T. Formation of Superhydrophobic Alumina Coating Films with High Transparency on Polymer Substrates by the Sol-Gel Method. J. Sol-Gel Sci. Technol. 2003, 26, 705–708. doi:10.1023/A:1020785818687.
  • Shirtcliffe, N.; McHale, G.; Newton, M.; Perry, C. C. Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir. 2005, 21, 937–943. doi:10.1021/la048630s.
  • Balu, B.; Breedveld, V.; Hess, D. W. Fabrication of “Roll-Off” and “Sticky” Superhydrophobic Cellulose Surfaces via Plasma Processing. Langmuir. 2008, 24, 4785–4790. doi:10.1021/la703766c.
  • Yoon, T. O.; Shin, H. J.; Jeoung, S. C.; Park, Y.-I. Formation of Superhydrophobic Poly (Dimethysiloxane) by Ultrafast Laser-Induced Surface Modification. Optics Expr. 2008, 16, 12715–12725. doi:10.1364/OE.16.012715.
  • Khorasani, M.; Mirzadeh, H.; Kermani, Z. Wettability of Porous Polydimethylsiloxane Surface: Morphology Study. Appl. Surf. Sci. 2005, 242, 339–345. doi:10.1016/j.apsusc.2004.08.035.
  • Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. Superhydrophobic Surfaces: From Structural Control to Functional Application. J. Mater. Chem. 2008, 18, 621–633. doi:10.1039/B711226B.
  • Lima, A. C.; Mano, J. F. Micro-/Nano-Structured Superhydrophobic Surfaces in the Biomedical Field: Part I: Basic Concepts and Biomimetic Approaches. Nanomedicine. 2015, 10, 103–119. doi:10.2217/nnm.14.174.
  • Yao, X.; Song, Y.; Jiang, L. Applications of Bio‐inspired Special Wettable Surfaces. Adv. Mater. 2011, 23, 719–734. doi:10.1002/adma.201002689.
  • Zhang, D.; Wang, L.; Qian, H.; Li, X. Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions. J. Coatings Technol. Res. 2016, 13, 11–29. doi:10.1007/s11998-015-9744-6.
  • Voronov, R. S.; Papavassiliou, D. V.; Lee, L. L. Review of Fluid Slip Over Superhydrophobic Surfaces and Its Dependence on the Contact Angle. Ind. Eng. Chem. Res. 2008, 47, 2455–2477. doi:10.1021/ie0712941.
  • Ferrari, M.; Benedetti, A. Superhydrophobic Surfaces for Applications in Seawater. Adv. Colloid Interface Sci. 2015, 222, 291–304. doi:10.1016/j.cis.2015.01.005.
  • Plawsky, J. L.; Ojha, M.; Chatterjee, A.; Wayner, P. C. Review of the Effects of Surface Topography, Surface Chemistry, and Fluid Physics on Evaporation at the Contact Line. Chem. Eng. Commun. 2008, 196, 658–696. doi:10.1080/00986440802569679.
  • Heikenfeld, J.; Dhindsa, M. Electrowetting on Superhydrophobic Surfaces: Present Status and Prospects. J. Adhes. Sci. Technol. 2008, 22, 319–334. doi:10.1163/156856108X295347.
  • Xia, F.; Zhu, Y.; Feng, L.; Jiang, L. Smart Responsive Surfaces Switching Reversibly Between Super-Hydrophobicity and Super-Hydrophilicity. Soft Matter. 2009, 5, 275–281. doi:10.1039/B803951H.
  • Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. doi:10.1021/ie50320a024.
  • Cassie, A.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–551. doi:10.1039/tf9444000546.
  • Swain, P. S.; Lipowsky, R. Contact Angles on Heterogeneous Surfaces: A New Look at Cassie’s and Wenzel’s Laws. Langmuir. 1998, 14, 6772–6780. doi:10.1021/la980602k.
  • Wolansky, G.; Marmur, A. The Actual Contact Angle on a Heterogeneous Rough Surface in Three Dimensions. Langmuir. 1998, 14, 5292–5297. doi:10.1021/la960723p.
  • Wolansky, G.; Marmur, A. Apparent Contact Angles on Rough Surfaces: The Wenzel Equation Revisited. Colloids Surf. A Physicochem. Eng. Aspects. 1999, 156, 381–388. doi:10.1016/S0927-7757(99)00098-9.
  • Patankar, N. A. Transition Between Superhydrophobic States on Rough Surfaces. Langmuir. 2004, 20, 7097–7102. doi:10.1021/la049329e.
  • Tuteja, A.; Choi, W.; Ma, M.; Mabry, J. M ,Mazzella, S. A ,Rutledge, G. C ,McKinley, G. H ,Cohen, R. E. Designing Superoleophobic Surfaces. Science 2007, 318, 1618–1622. doi:10.1126/science.1148326.
  • Poetes, R.; Holtzmann, K.; Franze, K.; Steiner, U. Metastable Underwater Superhydrophobicity. Phys. Rev. Lett. 2010, 105, 166104. doi:10.1103/PhysRevLett.105.166104.
  • Marmur, A. Super-Hydrophobicity Fundamentals: Implications to Biofouling Prevention. Biofouling. 2006, 22, 107–115. doi:10.1080/08927010600562328.
  • Bobji, M. S.; Kumar, S. V.; Asthana, A.; Govardhan, R. N. Underwater Sustainability of the “Cassie” State of Wetting. Langmuir. 2009, 25, 12120–12126. doi:10.1021/la902679c.
  • Bormashenko, E.; Bormashenko Y. Wetting of Composite Surfaces: When and Why is the Area Far from the Triple Line Important? J. Phys. Chem. C. 2013, 117, 19552–19557.
  • Bartolo, D.; Bouamrirene, F.; Verneuil, E.; Buguin, A.; Silberzan, P.; Moulinet, S. Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces. EPL (Europhys. Lett). 2006, 74, 299. doi:10.1209/epl/i2005-10522-3.
  • Reyssat, M.; Pépin, A.; Marty, F.; Chen, Y.; Quéré, D. Bouncing Transitions on Microtextured Materials. EPL (Europhys. Lett). 2006, 74, 306. doi:10.1209/epl/i2005-10523-2.
  • Sbragaglia, M.; Peters, A. M.; Pirat, C.; Borkent, B. M.; Lammertink, R. G. H.; Wessling, M.; Lohse, D. Spontaneous Breakdown of Superhydrophobicity. Phys. Rev. Lett. 2007, 99, 156001. doi:10.1103/PhysRevLett.99.156001.
  • Young, B.; Pitt, W.; Cooper, S. Protein Adsorption on Polymeric Biomaterials: II. Adsorption Kinetics. J. Colloid Interface Sci. 1988, 125, 246–260. doi:10.1016/0021-9797(88)90073-2.
  • Ratner, B. D. The Catastrophe Revisited: Blood Compatibility in the 21st Century. Biomater. 2007, 28, 5144–5147. doi:https://doi.org/10.1016/j.biomaterials.2007.07.035.
  • Horbett, T. A. Protein Adsorption on Biomaterials. In Biomaterials: Interfacial Phenomena and Applications; Cooper, S. L.; Peppas, N. A.; Eds.; American Chemical Society: Washington, DC, 1982; Vol. 199, pp. 233–244 (Advances in Chemistry).
  • Gombotz, W. R.; Guanghui, W.; Horbett, T. A.; Hoffman, A. S. Protein Adsorption to Poly (ethylene oxide) Surfaces. J. Biomed. Mater. Res. Part A. 1991, 25, 1547–1562. doi:10.1002/jbm.820251211.
  • Antonsen, K. P.; Hoffman, A. S. Water Structure of PEG Solutions by Differential Scanning Calorimetry Measurements. In Poly (ethylene glycol) Chemistry; Milton Harris, J.; Ed.; Springer: New York, 1992; pp. 15–28.
  • Lim, K.; Herron, J. N. Molecular Simulation of Protein-PEG Interaction. Poly-(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications; Plenum Press: New York, 1992; pp 29–55.
  • Prime, K. L.; Whitesides, G. M. Adsorption of Proteins onto Surfaces Containing End-Attached Oligo (Ethylene Oxide): A Model System Using Self-Assembled Monolayers. J. Am. Chem. Soc. 1993, 115, 10714–10721. doi:10.1021/ja00076a032.
  • Horbett, T.; Hoffman, A. Bovine Plasma Protein Adsorption onto Radiation-Grafted Hydrogels Based on Hydroxyethyl Methacrylate and N-Vinyl-Pyrrolidone. Adv. Chem. Ser. 1975, 145:230–254. doi:10.1021/advances.
  • Löpez, G. P.; Ratner, B. D.; Tidwell, C. D.; Haycox, C. L.; Rapoza, R. J.; Horbett, T. A. Glow Discharge Plasma Deposition of Tetraethylene Glycol Dimethyl Ether for Fouling‐Resistant Biomaterial Surfaces. J. Biomed. Mater. Res. A. 1992, 26, 415–439. doi:10.1002/jbm.820260402.
  • Sheu, M-S.; Hoffman, A.; Terlingen, J.; Feijen, J. A New Gas Discharge Process for Preparation of Non-fouling Surfaces on Biomaterials. Clin. Mater. 1993, 13, 41–45. doi:10.1016/0267-6605(93)90088-O.
  • Shin, H.; Jo, S.; Mikos, A. G. .Biomimetic Materials for Tissue Engineering. Biomater. 2003, 24, 4353–4364. doi:10.1016/S0142-9612(03)00339-9.
  • Latour, R. A. Biomaterials: Protein-Surface Interactions. Encyclopedia Biomater. Biomed. Eng. 2005, 1, 270–278.
  • Goldberg, M.; Langer, R.; Jia, X. Nanostructured Materials for Applications in Drug Delivery and Tissue Engineering. J. BioMater. Sci. Polym. Ed. 2007, 18, 241–268. doi:10.1163/156856207779996931.
  • Roach, P.; Farrar, D.; Perry, C. C. Surface Tailoring for Controlled Protein Adsorption: Effect of Topography at the Nanometer Scale and Chemistry. J. Am. Chem. Soc. 2006, 128, 3939–3945. doi:10.1021/ja056278e.
  • Mandal, H. S.; Kraatz, H.-B. Effect of the Surface Curvature on the Secondary Structure of Peptides Adsorbed on Nanoparticles. J. Am. Chem. Soc. 2007, 129, 6356–6357. doi:10.1021/ja0703372.
  • Genzer, J.; Efimenko, K. Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review. Biofouling. 2006, 22, 339–360. doi:10.1080/08927010600980223.
  • Bixler, G. D.; Bhushan, B. Biofouling: Lessons from Nature. Phil. Trans. R Soc. A. 2012, 370, 2381–2417. doi:10.1098/rsta.2011.0502.
  • Leibner, E. S.; Barnthip, N.; Chen, W.; Baumrucker, C. R.; Badding, J. V.; Pishko, M.; Vogler, E. A. Superhydrophobic Effect on the Adsorption of Human Serum Albumin. Acta Biomater. 2009, 5, 1389–1398. doi:10.1016/j.actbio.2008.11.003.
  • Huang, Q.; Lin, L.; Yang, Y.; Vogler, E. A.; Lin, C. Role of Trapped Air in the Formation of Cell-and-Protein Micropatterns on Superhydrophobic/Superhydrophilic Microtemplated Surfaces. Biomater. 2012, 33, 8213–8220. doi:10.1016/j.biomaterials.2012.08.017.
  • Accardo, A.; Gentile, F.; Mecarini, F.; De Angelis F.; Burghammer M.; Di Fabrizio E; Riekel, C. In Situ X-ray Scattering Studies of Protein Solution Droplets Drying on Micro-and Nanopatterned Superhydrophobic PMMA Surfaces. Langmuir. 2010, 26, 15057–15064. doi:10.1021/la102958w.
  • Choi, C.-H.; Kim, C-J. C. Droplet Evaporation of Pure Water and Protein Solution on Nanostructured Superhydrophobic Surfaces of Varying Heights. Langmuir. 2009, 25, 7561–7567. doi:10.1021/la803614h.
  • Roach, P.; Shirtcliffe, N. J.; Farrar, D.; Perry, C. C. Quantification of Surface-Bound Proteins by Fluorometric Assay: Comparison with Quartz Crystal Microbalance and Amido Black Assay. J. Phys. Chem. B. 2006, 110, 20572–20579. doi:10.1021/jp0621575.
  • Lord, M. S.; Foss, M.; Besenbacher, F. Influence of Nanoscale Surface Topography on Protein Adsorption and Cellular Response. Nano Today. 2010, 5, 66–78. doi:10.1016/j.nantod.2010.01.001.
  • Koc, Y.; de Mello, A. J.; McHale, G.; Newton, M. I. ,Roach, P. ,Shirtcliffe, N. J. Nano-Scale Superhydrophobicity: Suppression of Protein Adsorption and Promotion of Flow-Induced Detachment. Lab Chip. 2008, 8, 582–586. doi:10.1039/b716509a.
  • Kurylowicz, M.; Paulin, H.; Mogyoros, J.; Giuliani M, Dutcher J. R. The Effect of Nanoscale Surface Curvature on the Oligomerization of Surface-Bound Proteins. J. R. Soc. Interface. 2014, 11, 20130818. doi:10.1098/rsif.2013.0818.
  • Sun, T.; Tan, H.; Han, D.; Fu Q ,Jiang L. No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces. Small. 2005, 1, 959–963. doi:10.1002/smll.200500095.
  • Toes, G.; Van Muiswinkel, K.; Van Oeveren, W.; Suurmeijer, A.; Timens, W.; Stokroos, I.; van den Dungen, J. Superhydrophobic Modification Fails to Improve the Performance of Small Diameter Expanded Polytetrafluoroethylene Vascular Grafts. Biomaterials. 2002, 23, 255–262. doi:10.1016/S0142-9612(01)00103-X.
  • Schakenraad, J.; Stokroos, I.; Bartels, H.; Busscher, H. J. Patency of Small Caliber, Superhydrophobic e-PTFE Vascular Grafts; A Pilot Study in the Rabbit Carotid Artery. Cells Mater. 1992, 2, 2.
  • Hou, X.; Wang, X.; Zhu, Q.; Bao, J, Mao, C, Jiang, L, Shen, J. Preparation of Polypropylene Superhydrophobic Surface and Its Blood Compatibility. Colloids and Surfaces B: Biointerfaces. 2010, 80, 247–250. doi:10.1016/j.colsurfb.2010.06.013.
  • Zhou, M.; Yang, J. H; Ye, X; Zheng, A. R; Li, G; Yang, P; Zhu, Y; Cai, L., editors. Blood Platelet’s Behavior on Nanostructured Superhydrophobic Surface. J. Nano Res. 2008, 2, 129–136: Trans Tech Publ.
  • Huang, Q.; Yang, Y.; Hu, R.; Lin, C.; Sun, L.; Vogler, E. A. Reduced Platelet Adhesion and Improved Corrosion Resistance of Superhydrophobic TiO 2-Nanotube-Coated 316L Stainless Steel. Colloids Surf. B Biointerfaces. 2015, 125, 134–141. doi:10.1016/j.colsurfb.2014.11.028.
  • Yang, Y.; Lai, Y.; Zhang, Q.; Wu, K.; Zhang, L.; Lin, C.; Tang, P. A Novel Electrochemical Strategy for Improving Blood Compatibility of Titanium-Based Biomaterials. Colloids Surf. B. Biointerfaces. 2010, 79, 309–313. doi:10.1016/j.colsurfb.2010.04.013.
  • Nokes, J. M.; Liedert, R.; Kim, M. Y.; Siddiqui, A.; Chu, M.; Lee, E. K.; Khine, M. Reduced Blood Coagulation on Roll‐to‐Roll, Shrink‐Induced Superhydrophobic Plastics. Adv. Healthc. Mater. 2016, 5, 593–601. doi:10.1002/adhm.201500697.
  • Crick, C. R.; Parkin, I. P. Preparation and Characterisation of Super-Hydrophobic Surfaces. Chem. Eur. J. 2010, 16, 3568–3588. doi:10.1002/chem.200903335.
  • Essalhi, M.; Khayet, M. Surface Segregation of Fluorinated Modifying Macromolecule for Hydrophobic/Hydrophilic Membrane Preparation and Application in Air Gap and Direct Contact Membrane Distillation. J. Membrane Sci.. 2012, 417–418:163–173. doi:https://doi.org/10.1016/j.memsci.2012.06.028.
  • Bakeri, G.; Matsuura, T.; Ismail, A. F.; Rana D. A Novel Surface Modified Polyetherimide Hollow Fiber Membrane for Gas–Liquid Contacting Processes. Sep. Purif. Technol. 2012, 89, 160–170. doi:https://doi.org/10.1016/j.seppur.2012.01.022.
  • Rahbari Sisakht M.; Ismail A.; Rana D.; Matsuura T. Effect of Novel Surface Modifying Macromolecules on Morphology and Performance of Polysulfone Hollow Fiber Membrane Contactor for CO2 Absorption. Sep. Purif. Technol. 2012, 99, 61–68. doi:10.1016/j.seppur.2012.08.021.
  • Rahbari Sisakht, M.; Ismail A.; Rana D.; Matsuura T. A Novel Surface Modified Polyvinylidene Fluoride Hollow Fiber Membrane Contactor for CO2 Absorption. 2012, 415–416, 221–228.
  • Zhou, H.; Shi, R.; Jin, W. Novel Organic–Inorganic Pervaporation Membrane with a Superhydrophobic Surface for the Separation of Ethanol from an Aqueous Solution. Sep. Purif. Technol. 2014, 127, 61–69. doi:https://doi.org/10.1016/j.seppur.2014.02.032.
  • Zhang, J.; Song, Z.; Li, B.; Wang, Q, Wang S. Fabrication and Characterization of Superhydrophobic Poly (Vinylidene Fluoride) Membrane for Direct Contact Membrane Distillation. Desalination. 2013, 324, 1–9. doi:https://doi.org/10.1016/j.desal.2013.05.018.
  • Lin, S.-H.; Tung, K.-L.; Chen, W.-J.; Chang, H. W. Absorption of Carbon Dioxide by Mixed Piperazine–Alkanolamine Absorbent in a Plasma-Modified Polypropylene Hollow Fiber Contactor. J. Membr. Sci. 2009, 333, 30–37. doi:10.1016/j.memsci.2009.01.039.
  • Wei, X.; Zhao, B.; Li, X.-M.; Wang, Z., He, B. Q., He, T. ,Jiang, B. CF4 Plasma Surface Modification of Asymmetric Hydrophilic Polyethersulfone Membranes for Direct Contact Membrane Distillation. J. Membr. Sci. 2012, 407–408, 164–175. doi:https://doi.org/10.1016/j.memsci.2012.03.031.
  • Yang, C.; Li, X.-M.; Gilron, J.; Kong, D.; Yin, Y.; Oren, Y.; Linder, C.; He, T. CF4 Plasma-Modified Superhydrophobic PVDF Membranes for Direct Contact Membrane Distillation. J. Membr. Sci. 2014, 456, 155–161. doi:https://doi.org/10.1016/j.memsci.2014.01.013.
  • Song, W.; Lima, A. C.; Mano, J. F. Bioinspired Methodology to Fabricate Hydrogel Spheres for Multi-Applications Using Superhydrophobic Substrates [10.1039/C0SM00901F]. Soft Matter. 2010, 6, 5868–5871. doi:10.1039/c0sm00901f.
  • Yan, X.-T.; Xu, Y. Chemical Vapour Deposition; Springer-Verlag: London, 2010.
  • Rezaei, S.; Manouchehri, I.; Moradian, R.; Pourabbas B. One-Step Chemical Vapor Deposition and Modification of Silica Nanoparticles at the Lowest Possible Temperature and Superhydrophobic Surface Fabrication. Chem. Eng. J. 2014, 252, 11–16. doi:10.1016/j.cej.2014.04.100.
  • Zheng, Z.; Gu, Z.; Huo, R.; Luo, L. Superhydrophobicity of Polyvinylidene Fluoride Membrane Fabricated by Chemical Vapor Deposition from Solution. Appl. Surface Sci. 2009, 255, 7263–7267. doi:10.1016/j.apsusc.2009.03.084.
  • Razmjou, A.; Arifin, E.; Dong, G.; Chen, V. Superhydrophobic Modification of TiO2 Nanocomposite PVDF Membranes for Applications in Membrane Distillation. J. Membr. Sci. 2012, 415, 850–863. doi:10.1016/j.memsci.2012.06.004.
  • Park, E. J.; Kim, D. H.; Lee, J. H.; Ha, S.; Song, C.; Kim, Y.D. Fabrication of a Superhydrophobic and Oleophobic PTFE Membrane: An Application to Selective Gas Permeation. Mater. Res. Bull. 2016, 83, 88–95. doi:10.1016/j.materresbull.2016.05.022.
  • Xu, Z.; Liu, Z.; Song, P.; Xiao C. Fabrication of Super-Hydrophobic Polypropylene Hollow Fiber Membrane and Its Application in Membrane Distillation. Desalination. 2017, 414, 10–17. doi:10.1016/j.desal.2017.03.029.
  • Fang, J.; Wang, H.; Wang, X.; Lin, T. Superhydrophobic Nanofibre Membranes: Effects of Particulate Coating on Hydrophobicity and Surface Properties. J. Textile Inst. 2012, 103, 937–944. doi:10.1080/00405000.2011.631280.
  • Zhai, L.; Berg, M. C.; Cebeci, F. Ç.; Kim Y, Milwid J. M, Rubner M. F, Cohen R. E. Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle. Nano Lett. 2006, 6, 1213–1217. doi:10.1021/nl060644q.
  • Dawood, M. K.; Zheng, H.; Kurniawan, N. A.; Leong, K. C; Foo, Y. L; Rajagopalan, R.; Khan, S. A; Choi, W. K. Modulation of Surface Wettability of Superhydrophobic Substrates Using Si Nanowire Arrays and Capillary-Force-Induced Nanocohesion. Soft Matter. 2012, 8, 3549–3557. doi:10.1039/c2sm07279c.
  • Tricinci, O.; Terencio, T.; Mazzolai, B.; Pugno, N. M.; Greco, F.; Mattoli, V. 3D Micropatterned Surface Inspired by Salvinia Molesta via Direct Laser Lithography. ACS Appl. Mater. Interfaces. 2015, 7, 25560–25567. doi:10.1021/acsami.5b07722.
  • Barthlott, W.; Erdelen, W.; Rafiqpoor, M. D. Biodiversity and Technical Innovations: Bionics. In Concepts and Values in Biodiversity; Lanzerath, D. Friele, M.B., Eds.; Routledge: London, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.