1,071
Views
31
CrossRef citations to date
0
Altmetric
Articles

Polymeric microgels for bone tissue engineering applications – a review

, , &
Pages 381-397 | Received 15 Oct 2018, Accepted 13 Jan 2019, Published online: 03 Feb 2019

References

  • Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G. Bone Substitutes in Orthopaedic Surgery: From Basic Science to Clinical Practice. J. Mater. Sci: Mater. Med. 2014, 25, 2445–2461. doi:10.1007/s10856-014-5240-2.
  • Liu, X.; Ma, P. X. Polymeric Scaffolds for Bone Tissue Engineering. Ann. Biomed. Eng. 2004, 32, 477–486. doi:doi.org/10.1023/B:ABME.000.
  • Seal, B. L.; Otero, T. C.; Panitch, A. Polymeric Biomaterials for Tissue and Organ Regeneration. Mater. Sci. Eng. R Rep. 2001, 34, 147–230. doi:10.1016/S0927-796X(01)00035-3.
  • Bolgen, N.; Yang, Y.; Korkusuz, P.; Guzel, E.; El Haj, A. J.; Piskin, E. Three-Dimensional Ingrowth of Bone Cells within Biodegradable Cryogel Scaffolds in Bioreactors at Different Regimes. Tissue. Eng. Part A. 2008, 14, 1743–1750. doi:10.1089/ten.tea.2007.0277.
  • Ensrud, K. E. Epidemiology of Fracture Risk with Advancing Age. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1236–1242. doi:10.1093/gerona/glt092.
  • GlobalData. Medipoint: Bone Grafts and Substitutes – Global Analysis and Market Forecasts. 2014.
  • Kolk, A.; Handschel, J.; Drescher, W.; Rothamel, D.; Kloss, F.; Blessmann, M.; Heiland, M.; Wolff, K. D.; Smeets, R. Current Trends and Future Perspectives of Bone Substitute Materials – from Space Holders to Innovative Biomaterials. J. Craniomaxillofac. Surg. 2012, 40, 706–718. doi:10.1016/j.jcms.2012.01.002.
  • Giannoudis, P. V.; Einhorn, T. A.; Marsh, D. Fracture Healing: The Diamond Concept. Injury 2007, 38, S3–S6. doi:10.1016/S0020-1383(08)70003-2.
  • Giannoudis, P. V.; Einhorn, T. A.; Schmidmaier, G.; Marsh, D. The Diamond Concept–Open Questions. Injury 2008, 39, S5–S8. doi:10.1016/S0020-1383(08)70010-X.
  • Hutmacher, D. W.; Schantz, J. T.; Lam, C. X.; Tan, K. C.; Lim, T. C. State of the Art and Future Directions of Scaffold-Based Bone Engineering from a Biomaterials Perspective. J. Tissue Eng. Regen. Med. 2007, 1, 245–260. doi:10.1002/term.24.
  • Woodruff, M. A.; Lange, C.; Reichert, J.; Berner, A.; Chen, F.; Fratzl, P.; Schantz, J.-T.; Hutmacher, D. W. Bone Tissue Engineering: From Bench to Bedside. Mater. Today 2012, 15, 430–435. doi:10.1016/S1369-7021(12)70194-3.
  • Glombitza, M.; Steinhausen, E. Treatment of Chronic Osteomyelitis of the Lower Limb with a New Injectable, Vancomycin-Loaded, Calcium Sulfate/Hydroxyapatite Composite. Orthop. Proc. 2016, 98-B, 39. doi:10.1302/1358-992x.98bsupp_23.ebjis2016-039.
  • Schwartz, C.; Bordei, R. Biphasic Phospho-Calcium Ceramics Used as Bone Substitutes Are Efficient in the Management of Severe Acetabular Bone Loss in Revision Total Hip Arthroplasties. Eur. J. Orthop. Surg. Traumatol. 2005, 15, 191–196. doi:10.1007/s00590-005-0244-8.
  • Scheer, J. H.; Adolfsson, L. E. Tricalcium Phosphate Bone Substitute in Corrective Osteotomy of the Distal Radius. Injury 2009, 40, 262–267. doi:10.1016/j.injury.2008.08.013.
  • Saikia, K. C.; Bhattacharya, T. D.; Bhuyan, S. K.; Talukdar, D. J.; Saikia, S. P.; Jitesh, P. Calcium Phosphate Ceramics as Bone Graft Substitutes in Filling Bone Tumor Defects. Indian J. Orthop. 2008, 42, 169–172. doi:10.4103/0019-5413.39588.
  • Heise, U.; Osborn, J. F.; Duwe, F. Hydroxyapatite Ceramic as a Bone Substitute. Int. Orthop. 1990, 14, 329–338. doi:10.1007/BF00178768.
  • Whitehouse, M. R.; Blom, A. W. The Use of Ceramics as Bone Substitutes in Revision Hip Arthroplasty. Materials 2009, 2, 1895–1907. doi:10.3390/ma2041895.
  • Lindfors, N. C.; Hyvonen, P.; Nyyssonen, M.; Kirjavainen, M.; Kankare, J.; Gullichsen, E.; Salo, J. Bioactive Glass S53p4 as Bone Graft Substitute in Treatment of Osteomyelitis. Bone 2010, 47, 212–218. doi:10.1016/j.bone.2010.05.030.
  • Wheeler, D. L.; Eschbach, E. J.; Hoellrich, R. G.; Montfort, M. J.; Chamberland, D. L. Assessment of Resorbable Bioactive Material for Grafting of Critical-Size Cancellous Defects. J. Orthop. Res. 2000, 18, 140–148. doi:10.1002/jor.1100180120.
  • Zwingenberger, S.; Nich, C.; Valladares, R. D.; Yao, Z.; Stiehler, M.; Goodman, S. B. Recommendations and Considerations for the Use of Biologics in Orthopedic Surgery. BioDrugs 2012, 26, 245–256. doi:10.2165/11631680-000000000-00000.
  • Buchanan, F.; Gallagher, L.; Jack, V.; Dunne, N. Short-Fibre Reinforcement of Calcium Phosphate Bone Cement. Proc. Inst. Mech. Eng. H. 2007, 221, 203–211. doi:10.1243/09544119JEIM235.
  • Xu, H. H. K.; Wang, P.; Wang, L.; Bao, C.; Chen, Q.; Weir, M. D.; Chow, L. C.; Zhao, L.; Zhou, X.; Reynolds, M. A. Calcium Phosphate Cements for Bone Engineering and Their Biological Properties. Bone Res. 2017, 5, 17056. doi:10.1038/boneres.2017.56.
  • Verron, E.; Pissonnier, M. L.; Lesoeur, J.; Schnitzler, V.; Fellah, B. H.; Pascal-Moussellard, H.; Pilet, P.; Gauthier, O.; Bouler, J. M. Vertebroplasty Using Bisphosphonate-Loaded Calcium Phosphate Cement in a Standardized Vertebral Body Bone Defect in an Osteoporotic Sheep Model. Acta Biomater. 2014, 10, 4887–4895. doi:10.1016/j.actbio.2014.07.012.
  • Hiraoka, Y.; Kimura, Y.; Ueda, H.; Tabata, Y. Fabrication and Biocompatibility of Collagen Sponge Reinforced with Poly(Glycolic Acid) Fiber. Tissue Eng. 2003, 9, 1101–1112. doi:10.1089/10763270360728017.
  • Aravamudhan, A.; Ramos, D. M.; Nip, J.; Harmon, M. D.; James, R.; Deng, M.; Laurencin, C. T.; Yu, X.; Kumbar, S. G. Cellulose and Collagen Derived Micro-Nano Structured Scaffolds for Bone Tissue Engineering. J. Biomed. Nanotechnol. 2013, 9, 719–731. doi:10.1166/jbn.2013.1574.
  • Schneider, R. K.; Puellen, A.; Kramann, R.; Raupach, K.; Bornemann, J.; Knuechel, R.; Perez-Bouza, A.; Neuss, S. The Osteogenic Differentiation of Adult Bone Marrow and Perinatal Umbilical Mesenchymal Stem Cells and Matrix Remodelling in Three-Dimensional Collagen Scaffolds. Biomaterials 2010, 31, 467–480. doi:10.1016/j.biomaterials.2009.09.059.
  • Suarez-Gonzalez, D.; Barnhart, K.; Saito, E.; Vanderby, R.; Jr.; Hollister, S. J.; Murphy, W. L. Controlled Nucleation of Hydroxyapatite on Alginate Scaffolds for Stem Cell-Based Bone Tissue Engineering. J. Biomed. Mater. Res. A 2010, 95, 222–234. doi:10.1002/jbm.a.32833.
  • Zhou, H.; Xu, H. H. The Fast Release of Stem Cells from Alginate-Fibrin Microbeads in Injectable Scaffolds for Bone Tissue Engineering. Biomaterials 2011, 32, 7503–7513. doi:10.1016/j.biomaterials.2011.06.045.
  • Wang, L.; Stegemann, J. P. Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with Beta-Glycerophosphate for Bone Tissue Engineering. Biomaterials 2010, 31, 3976–3985. doi:10.1016/j.biomaterials.2010.01.131.
  • Thein-Han, W.; Xu, H. H. Collagen-Calcium Phosphate Cement Scaffolds Seeded with Umbilical Cord Stem Cells for Bone Tissue Engineering. Tissue Eng. Part A 2011, 17, 2943–2954. doi:10.1089/ten.tea.2010.0674.
  • López-Noriega, A.; Quinlan, E.; Celikkin, N.; O’Brien, F. J. Incorporation of Polymeric Microparticles into Collagen-Hydroxyapatite Scaffolds for the Delivery of a Pro-Osteogenic Peptide for Bone Tissue Engineering. APL Materials 2015, 3, 014910. doi:10.1063/1.4902833.
  • P, G. J.; Frank, L.; Sonia, P.; O. B. F, J. Collagen-Hydroxyapatite Composite Scaffolds as an Alternative to Autogenous Bone Grafts. Orthop. Proc. 2012, 94-B, 8. doi:10.1302/1358-992x.94bsupp_xxxviii.coa2011-008.
  • Villa, M. M.; Wang, L.; Huang, J.; Rowe, D. W.; Wei, M. Bone Tissue Engineering with a Collagen–Hydroxyapatite Scaffold and Culture Expanded Bone Marrow Stromal Cells. J. Biomed. Mater. Res. B. 2015, 103, 243–253. doi:10.1002/jbm.b.33225.
  • Sarikaya, B.; Aydin, H. M. Collagen/Beta-Tricalcium Phosphate Based Synthetic Bone Grafts via Dehydrothermal Processing. Biomed. Res. Int. 2015, 2015, 1–9. doi:10.1155/2015/576532.
  • Baheiraei, N.; Nourani, M. R.; Mortazavi, S. M. J.; Movahedin, M.; Eyni, H.; Bagheri, F.; Norahan, M. H. Development of a Bioactive Porous Collagen/Β-Tricalcium Phosphate Bone Graft Assisting Rapid Vascularization for Bone Tissue Engineering Applications. J. Biomed. Mater. Res. A 2018, 106, 73–85. doi:10.1002/jbm.a.36207.
  • Diogo, G. S.; Gaspar, V. M.; Serra, I. R.; Fradique, R.; Correia, I. J. Manufacture of Β-Tcp/Alginate Scaffolds through a Fab@Home Model for Application in Bone Tissue Engineering. Biofabrication 2014, 6, 025001. doi:10.1088/1758-5082/6/2/025001.
  • Fang, X.; Lei, L.; Jiang, T.; Chen, Y.; Kang, Y. Injectable Thermosensitive Alginate/Β-Tricalcium Phosphate/Aspirin Hydrogels for Bone Augmentation. J. Biomed. Mater. Res. B 2018, 106, 1739–1751. doi:10.1002/jbm.b.33982.
  • Miguel, C.; Jorge, R.; Inês, P.; Barbara, G.; Manuel, P.; Claus, M.; Jürgen, G.; Andrea, E.; Elke, V. Fabrication of Individual Alginate-tcp scaffolds for Bone Tissue Engineering by Means of Powder Printing. Biofabrication 2015, 7, 015004. doi:10.1088/1758-5090/7/1/015004.
  • Kanasan, N.; Adzila, S.; Suid, M. S.; Gurubaran, P. Preparation and Characterization of Hydroxyapatite/Sodium Alginate Biocomposites for Bone Implant Application. AIP Conf. Proc. 2016, 1756, 020006. doi:10.1063/1.4958749.
  • Lin, H.-R.; Yeh, Y.-J. Porous Alginate/Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering: Preparation, Characterization, and in Vitro Studies. J. Biomed. Mater. Res. 2004, 71B, 52–65. doi:10.1002/jbm.b.30065.
  • Einhorn, T. A.; Gerstenfeld, L. C. Fracture Healing: Mechanisms and Interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. doi:10.1038/nrrheum.2014.164.
  • Huang, Y. H.; Polimeni, G.; Qahash, M.; Wikesjo, U. M. Bone Morphogenetic Proteins and Osseointegration: Current Knowledge – Future Possibilities. Periodontol 2000 2008, 47, 206–223. doi:10.1111/j.1600-0757.2007.00240.x.
  • Williams, D. F. On the Mechanisms of Biocompatibility. Biomaterials 2008, 29, 2941–2953. doi:10.1016/j.biomaterials.2008.04.023.
  • Lichte, P.; Pape, H. C.; Pufe, T.; Kobbe, P.; Fischer, H. Scaffolds for Bone Healing: Concepts, Materials and Evidence. Injury 2011, 42, 569–573. doi:10.1016/j.injury.2011.03.033.
  • Rouwkema, J.; Rivron, N. C.; van Blitterswijk, C. A. Vascularization in Tissue Engineering. Trends Biotechnol. 2008, 26, 434–441. doi:10.1016/j.tibtech.2008.04.009.
  • Hutmacher, D. W. Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials 2000, 21, 2529–2543. doi:10.1016/S0142-9612(00)00121-6.
  • Olszta, M. J.; Cheng, X.; Jee, S. S.; Kumar, R.; Kim, Y.-Y.; Kaufman, M. J.; Douglas, E. P.; Gower, L. B. Bone Structure and Formation: A New Perspective. Mater. Sci. Eng. R Rep. 2007, 58, 77–116. doi:10.1016/j.mser.2007.05.001.
  • Staudinger, H.; Husemann, E. Über Hochpolymere Verbindungen, 116. Mitteil.: Über Das Begrenzt Quellbare Poly-Styrol. Ber. Dtsch. Chem. Ges. A/B. 1935, 68, 1618–1634. doi:10.1002/cber.19350680841.
  • Baker, W. O. Microgel, a New Macromolecule. Ind. Eng. Chem. 1949, 41, 511–520. doi:10.1021/ie50471a016.
  • Dickinson, E. Microgels — an Alternative Colloidal Ingredient for Stabilization of Food Emulsions. Trends Food Sci. Technol. 2015, 43, 178–188. doi:10.1016/j.tifs.2015.02.006.
  • Omari, A.; Tabary, R.; Rousseau, D.; Calderon, F. L.; Monteil, J.; Chauveteau, G. Soft Water-Soluble Microgel Dispersions: Structure and Rheology. J. Colloid Interface Sci. 2006, 302, 537–546. doi:10.1016/j.jcis.2006.07.006.
  • Crowther, H. M.; Vincent, B. Swelling Behavior of Poly- N-Isopropylacrylamide Microgel Particles in Alcoholic Solutions. Colloid. Polym. Sci. 1998, 276, 46–51. doi:10.1007/s003960050207.
  • Dai, Z.; Ngai, T. Microgel Particles: The Structure-Property Relationships and Their Biomedical Applications. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 2995–3003. doi:10.1002/pola.26698.
  • Hoare, T.; Pelton, R. Dimensionless Plot Analysis: A New Way to Analyze Functionalized Microgels. J. Colloid Interface Sci. 2006, 303, 109–116. doi:10.1016/j.jcis.2006.07.047.
  • Malmsten, M.; Bysell, H.; Hansson, P. Biomacromolecules in Microgels — Opportunities and Challenges for Drug Delivery. Curr. Opin. Colloid Interface Sci. 2010, 15, 435–444. doi:10.1016/j.cocis.2010.05.016.
  • Bai, X.; Gao, M.; Syed, S.; Zhuang, J.; Xu, X.; Zhang, X.-Q. Bioactive Hydrogels for Bone Regeneration. Bioact. Mater. 2018, 3, 401–417. doi:10.1016/j.bioactmat.2018.05.006.
  • Zhao, J.; Luo, C.; Chen, Y.; Wu, D.; Shen, C.; Han, W.; Tu, M.; Zeng, R. Preparation, Structure and Bmp-2 Controlled Release of Heparin-Conjugated Hyaluronan Microgels. Carbohydr. Polym. 2011, 86, 806–811. doi:10.1016/j.carbpol.2011.05.026.
  • Zuo, Q.; Lu, J.; Hong, A.; Zhong, D.; Xie, S.; Liu, Q.; Huang, Y.; Shi, Y.; He, L.; Xue, W. Preparation and Characterization of Pem-Coated Alginate Microgels for Controlled Release of Protein. Biomed. Mater. 2012, 7, 1–12. doi:10.1088/1748-6041/7/3/035012.
  • Cha, C.; Oh, J.; Kim, K.; Qiu, Y.; Joh, M.; Shin, S. R.; Wang, X.; Camci-Unal, G.; Wan, K. T.; Liao, R.; Khademhosseini, A. Microfluidics-Assisted Fabrication of Gelatin-Silica Core-Shell Microgels for Injectable Tissue Constructs. Biomacromolecules 2014, 15, 283–290. doi:10.1021/bm401533y.
  • Moraes, C.; Simon, A. B.; Putnam, A. J.; Takayama, S. Aqueous Two-Phase Printing of Cell-Containing Contractile Collagen Microgels. Biomaterials 2013, 34, 9623–9631. doi:10.1016/j.biomaterials.2013.08.046.
  • Siltanen, C.; Yaghoobi, M.; Haque, A.; You, J.; Lowen, J.; Soleimani, M.; Revzin, A. Microfluidic Fabrication of Bioactive Microgels for Rapid Formation and Enhanced Differentiation of Stem Cell Spheroids. Acta Biomater. 2016, 34, 125–132. doi:10.1016/j.actbio.2016.01.012.
  • Das, A.; Barker, D. A.; Wang, T.; Lau, C. M.; Lin, Y.; Botchwey, E. A. Delivery of Bioactive Lipids from Composite Microgel-Microsphere Injectable Scaffolds Enhances Stem Cell Recruitment and Skeletal Repair. PLoS One. 2014, 9, 1–11. doi:10.1371/journal.pone.0101276.
  • Saunders, B. R.; Vincent, B. Microgel Particles as Model Colloids: Theory, Properties and Applications. Adv. Colloid Interface Sci 1999, 80, 1–25. doi:10.1016/S0001-8686(98)00071-2.
  • Reufer, M.; Diaz-Leyva, P.; Lynch, I.; Scheffold, F. Temperature-Sensitive Poly(N-Isopropyl-Acrylamide) Microgel Particles: A Light Scattering Study. Eur. Phys. J. E Soft Matter. 2009, 28, 165–171. doi:10.1140/epje/i2008-10387-2.
  • Riederer, M. S.; Requist, B. D.; Payne, K. A.; Way, J. D.; Krebs, M. D. Injectable and Microporous Scaffold of Densely-Packed, Growth Factor-Encapsulating Chitosan Microgels. Carbohydr. Polym. 2016, 152, 792–801. doi:10.1016/j.carbpol.2016.07.052.
  • Kim, P. H.; Yim, H. G.; Choi, Y. J.; Kang, B. J.; Kim, J.; Kwon, S. M.; Kim, B. S.; Hwang, N. S.; Cho, J. Y. Injectable Multifunctional Microgel Encapsulating Outgrowth Endothelial Cells and Growth Factors for Enhanced Neovascularization. J. Control. Release. 2014, 187, 1–13. doi:10.1016/j.jconrel.2014.05.010.
  • Olalde, B.; Garmendia, N.; Saez-Martinez, V.; Argarate, N.; Nooeaid, P.; Morin, F.; Boccaccini, A. R. Multifunctional Bioactive Glass Scaffolds Coated with Layers of Poly(D,L-Lactide-Co-Glycolide) and Poly(N-Isopropylacrylamide-Co-Acrylic Acid) Microgels Loaded with Vancomycin. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 3760–3767. doi:10.1016/j.msec.2013.05.002.
  • Foster, G. A.; Headen, D. M.; Gonzalez-Garcia, C.; Salmeron-Sanchez, M.; Shirwan, H.; Garcia, A. J. Protease-Degradable Microgels for Protein Delivery for Vascularization. Biomaterials 2017, 113, 170–175. doi:10.1016/j.biomaterials.2016.10.044.
  • Panda, P.; Ali, S.; Lo, E.; Chung, B. G.; Hatton, T. A.; Khademhosseini, A.; Doyle, P. S. Stop-Flow Lithography to Generate Cell-Laden Microgel Particles. Lab Chip. 2008, 8, 1056–1061. doi:10.1039/b804234a.
  • Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel Nanoparticles in Drug Delivery. Adv. Drug Del. Rev. 2008, 60, 1638–1649. doi:10.1016/j.addr.2008.08.002.
  • Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. doi:10.1016/S0939-6411(00)00090-4.
  • Freemont, T. J.; Saunders, B. R. Ph-Responsive Microgel Dispersions for Repairing Damaged Load-Bearing Soft Tissue. Soft Matter. 2008, 4, 919–924. doi:10.1039/b718441g.
  • Li, F.; Truong, V. X.; Thissen, H.; Frith, J. E.; Forsythe, J. S. Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS Appl. Mater. Interfaces 2017, 9, 8589–8601. doi:10.1021/acsami.7b00728.
  • Xie, J.; Ma, B.; Michael, P. L. Fabrication of Novel 3d Nanofiber Scaffolds with Anisotropic Property and Regular Pores and Their Potential Applications. Adv. Healthc. Mater. 2012, 1, 674–678. doi:10.1002/adhm.201200100.
  • Thibault, R. A.; Mikos, A. G.; Kasper, F. K. Scaffold/Extracellular Matrix Hybrid Constructs for Bone-Tissue Engineering. Adv. Healthc. Mater. 2013, 2, 13–24. doi:10.1002/adhm.201200209.
  • Jhala, D.; Rather, H.; Vasita, R. Polycaprolactone-Chitosan Nanofibers Influence Cell Morphology to Induce Early Osteogenic Differentiation. Biomater. Sci. 2016, 4, 1584–1595. doi:10.1039/C6BM00492J.
  • Nanda, H. S.; Nakamoto, T.; Chen, S.; Cai, R.; Kawazoe, N.; Chen, G. Collagen Microgel-Assisted Dexamethasone Release from Plla-Collagen Hybrid Scaffolds of Controlled Pore Structure for Osteogenic Differentiation of Mesenchymal Stem Cells. J. Biomater. Sci. Polym. Ed. 2014, 25, 1374–1386. doi:10.1080/09205063.2014.938980.
  • Yuan, X.; Li, R.; Rao, Z.; Li, H.; Rong, J.; Tu, M.; Zeng, R.; Zhao, J. Synthesis and Characterization of a Dually Crosslinked Heparin-Conjugated Ha Hydrogel for Bmp-2 Sustained Delivery. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 928–937. doi:10.1080/00914037.2016.1180609.
  • Murray, M. M.; Mankin, H. J.; Glowacki, J. The Musculoskeletal System. In The Physiologic Basis of Surgery; O’Leary, J. P., Ed.; Lippincott, Williams & Wilkins: Philadelphia, PA, 2002; pp 577–595.
  • Tayalia, P.; Mooney, D. J. Controlled Growth Factor Delivery for Tissue Engineering. Adv. Mater. 2009, 21, 3269–3285. doi:10.1002/adma.200900241.
  • Xia, P.; Zhang, K.; Gong, Y.; Li, G.; Yan, S.; Yin, J. Injectable Stem Cell Laden Open Porous Microgels That Favor Adipogenesis: In Vitro and in Vivo Evaluation. ACS Appl. Mater. Interfaces 2017, 9, 34751–34761. doi:10.1021/acsami.7b13065.
  • Hou, Y.; Xie, W.; Achazi, K.; Cuellar-Camacho, J. L.; Melzig, M. F.; Chen, W.; Haag, R. Injectable Degradable Pva Microgels Prepared by Microfluidic Technology for Controlled Osteogenic Differentiation of Mesenchymal Stem Cells. Acta Biomater. 2018, 77, 28–37. doi:10.1016/j.actbio.2018.07.003.
  • Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T. Accelerated Wound Healing by Injectable Microporous Gel Scaffolds Assembled from Annealed Building Blocks. Nat. Mater. 2015, 14, 737–744. doi:10.1038/nmat4294.
  • Goustin, A. S.; Leof, E. B.; Shipley, G. D.; Moses, H. L. Growth Factors and Cancer. Cancer Res. 1986, 46, 1015–1029. doi: Published March 1986.
  • Varkey, M.; Gittens, S. A.; Uludag, H. Growth Factor Delivery for Bone Tissue Repair: An Update. Expert Opin. Drug Deliv. 2004, 1, 19–36. doi:10.1517/17425247.1.1.19.
  • Rasi Ghaemi, S.; Delalat, B.; Ceto, X.; Harding, F. J.; Tuke, J.; Voelcker, N. H. Synergistic Influence of Collagen I and Bmp 2 Drives Osteogenic Differentiation of Mesenchymal Stem Cells: A Cell Microarray Analysis. Acta Biomater. 2016, 34, 41–52. doi:10.1016/j.actbio.2015.07.027.
  • Baker, M.; Carr, F. Pre-Clinical Considerations in the Assessment of Immunogenicity for Protein Therapeutics. Curr Drug Saf. 2010, 5, 308–313. doi:10.2174/157488610792246000.
  • Taghavi, C. E.; Lee, K. B.; He, W.; Keorochana, G.; Murray, S. S.; Brochmann, E. J.; Uludag, H.; Behnam, K.; Wang, J. C. Bone Morphogenetic Protein Binding Peptide Mechanism and Enhancement of Osteogenic Protein-1 Induced Bone Healing. Spine 2010, 35, 2049–2056. doi:10.1097/BRS.0b013e3181cc0220.
  • Lad, S. P.; Bagley, J. H.; Karikari, I. O.; Babu, R.; Ugiliweneza, B.; Kong, M.; Isaacs, R. E.; Bagley, C. A.; Gottfried, O. N.; Patil, C. G.; et al. Cancer after Spinal Fusion: The Role of Bone Morphogenetic Protein. Neurosurgery 2013, 73, 440–449. doi:10.1227/NEU.0000000000000018.
  • Pelton, R. Temperature-Sensitive Aqueous Microgels. Adv. Colloid Interface Sci. 2000, 85, 1–33. doi:10.1016/S0001-8686(99)00023-8.
  • Oh, J. K.; Lee, D. I.; Park, J. M. Biopolymer-Based Microgels/Nanogels for Drug Delivery Applications. Prog. Polym. Sci. 2009, 34, 1261–1282. doi:10.1016/j.progpolymsci.2009.08.001.
  • Yang, X.; Kim, J. C. Novel Ph-Sensitive Microgels Prepared Using Salt Bridge. Int. J. Pharm. 2010, 388, 58–63. doi:10.1016/j.ijpharm.2009.12.035.
  • Yoon, J. J.; Chung, H. J.; Lee, H. J.; Park, T. G. Heparin-Immobilized Biodegradable Scaffolds for Local and Sustained Release of Angiogenic Growth Factor. J. Biomed. Mater. Res. A 2006, 79, 934–942. doi:10.1002/jbm.a.30843.
  • Pike, D. B.; Cai, S.; Pomraning, K. R.; Firpo, M. A.; Fisher, R. J.; Shu, X. Z.; Prestwich, G. D.; Peattie, R. A. Heparin-Regulated Release of Growth Factors in Vitro and Angiogenic Response In Vivo to Implanted Hyaluronan Hydrogels Containing VEGF and bFGF. Biomaterials 2006, 27, 5242–5251. doi:10.1016/j.biomaterials.2006.05.018.
  • Lv, J.; Li, X.; Yin, H.; Wang, L.; Pei, Y.; Lv, X. Controlled Release of Vancomycin Hydrochloride from a Composite Structure of Polymeric Films and Porous Fibers on Implants. Chem. Eng. J. 2017, 325, 601–610. doi:10.1016/j.cej.2017.05.118.
  • Meena, L. K.; Raval, P.; Kedaria, D.; Vasita, R. Study of Locust Bean Gum Reinforced Cyst-Chitosan and Oxidized Dextran Based Semi-Ipn Cryogel Dressing for Hemostatic Application. Bioact. Mater. 2018, 3, 370–384. doi:10.1016/j.bioactmat.2017.11.005.
  • Sagbas, S.; Sahiner, N. Modifiable Natural Gum Based Microgel Capsules as Sustainable Drug Delivery Systems. Carbohydr. Polym. 2018, 200, 128–136. doi:10.1016/j.carbpol.2018.07.085.
  • Johnson, E. N.; Burns, T. C.; Hayda, R. A.; Hospenthal, D. R.; Murray, C. K. Infectious Complications of Open Type Iii Tibial Fractures among Combat Casualties. Clin. Infect. Dis. 2007, 45, 409–415. doi:10.1086/520029.
  • de Lissovoy, G.; Fraeman, K.; Hutchins, V.; Murphy, D.; Song, D.; Vaughn, B. B. Surgical Site Infection: Incidence and Impact on Hospital Utilization and Treatment Costs. Am. J. Infect. Control 2009, 37, 387–397. doi:10.1016/j.ajic.2008.12.010.
  • Cross, W. W.; Swiontkowski, M. F. Treatment Principles in the Management of Open Fractures. Indian J. Orthop. 2008, 42, 377–386. doi:10.4103/0019-5413.43373.
  • Saez-Martinez, V.; Argarate, N.; Morin, F.; Garagorri, N. Comparative Study of Dexamethasone and Vancomycin Release Behavior from Stimuli-Sensitive Microgel Aqueous Dispersions. J. Drug Deliv. Sci. Technol. 2012, 22, 313–316. doi:10.1016/S1773-2247(12)50053-5.
  • Vogel, J. P.; Szalay, K.; Geiger, F.; Kramer, M.; Richter, W.; Kasten, P. Platelet-Rich Plasma Improves Expansion of Human Mesenchymal Stem Cells and Retains Differentiation Capacity and in Vivo Bone Formation in Calcium Phosphate Ceramics. Platelets 2006, 17, 462–469. doi:10.1080/09537100600758867.
  • Smith, L. A.; Liu, X.; Hu, J.; Wang, P.; Ma, P. X. Enhancing Osteogenic Differentiation of Mouse Embryonic Stem Cells by Nanofibers. Tissue Eng. Part A. 2009, 15, 1855–1864. doi:10.1089/ten.tea.2008.0227.
  • Evans, N. D.; Swain, R. J.; Gentleman, E.; Gentleman, M. M.; Stevens, M. M. Gene-expression Analysis Reveals That Embryonic Stem Cells Cultured under Osteogenic Conditions Produce Mineral Non-specifically Compared to Marrow Stromal Cells or Osteoblasts. Eur. Cell. Mater. 2012, 24, 211–223. doi:10.22203/eCM.v024a15
  • Fiedler, J.; Etzel, N.; Brenner, R. E. To Go or Not to Go: Migration of Human Mesenchymal Progenitor Cells Stimulated by Isoforms of PDGF. J. Cell. Biochem. 2004, 93, 990–998. doi:10.1002/jcb.20219.
  • Cenni, E.; Ciapetti, G.; Granchi, D.; Fotia, C.; Perut, F.; Giunti, A.; Baldini, N. Endothelial Cells Incubated with Platelet-Rich Plasma Express PDGF-B and ICAM-1 and Induce Bone Marrow Stromal Cell Migration. J. Orthop. Res. 2009, 27, 1493–1498. doi:10.1002/jor.20896.
  • Ren, L.; Ma, D.; Liu, B.; Li, J.; Chen, J.; Yang, D.; Gao, P. Preparation of Three-Dimensional Vascularized MSC Cell Sheet Constructs for Tissue Regeneration. Biomed. Res. Int. 2014, 2014, 1. doi:10.1155/2014/301279.
  • Yu, H.; VandeVord, P. J.; Mao, L.; Matthew, H. W.; Wooley, P. H.; Yang, S. Y. Improved Tissue-Engineered Bone Regeneration by Endothelial Cell Mediated Vascularization. Biomaterials 2009, 30, 508–517. doi:10.1016/j.biomaterials.2008.09.047.
  • Asahara, T.; Masuda, H.; Takahashi, T.; Kalka, C.; Pastore, C.; Silver, M.; Kearne, M.; Magner, M.; Isner, J. M. Bone Marrow Origin of Endothelial Progenitor Cells Responsible for Postnatal Vasculogenesis in Physiological and Pathological Neovascularization. Circ. Res 1999, 85, 221–228. doi:10.1161/01.RES.85.3.221.
  • Duttenhoefer, F.; Lara de Freitas, R.; Meury, T.; Loibl, M.; Benneker, L. M.; Richards, R. G.; Alini, M.; Verrier, S. 3D Scaffolds Co-Seeded with Human Endothelial Progenitor and Mesenchymal Stem Cells: Evidence of Prevascularisation within 7 Days. Eur. Cell. Mater. 2013, 26, 49–64. discussion 64-5.
  • van Ramshorst, J.; Rodrigo, S. F.; Schalij, M. J.; Beeres, S. L.; Bax, J. J.; Atsma, D. E. Bone Marrow Cell Injection for Chronic Myocardial Ischemia: The past and the Future. J. Cardiovasc. Trans. Res. 2011, 4, 182–191. doi:10.1007/s12265-010-9249-8.
  • Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21, 3307–3329. doi:10.1002/adma.200802106.
  • Nicodemus, G. D.; Bryant, S. J. Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications. Tissue Eng. Part. B Rev. 2008, 14, 149–165. doi:10.1089/ten.teb.2007.0332.
  • Jiang, W.; Li, M.; Chen, Z.; Leong, K. W. Cell-Laden Microfluidic Microgels for Tissue Regeneration. Lab Chip 2016, 16, 4482–4506. doi:10.1039/C6LC01193D.
  • Schmidt, J. J.; Jeong, J.; Kong, H. The Interplay Between Cell Adhesion Cues and Curvature of Cell Adherent Alginate Microgels in Multipotent Stem Cell Culture. Tissue Eng. Part A 2011, 17, 2687–2694. doi:10.1089/ten.tea.2010.0685.
  • Tsuda, Y.; Morimoto, Y.; Takeuchi, S. Monodisperse Cell-Encapsulating Peptide Microgel Beads for 3D Cell Culture. Langmuir 2010, 26, 2645–2649. doi:10.1021/la902827y.
  • Guermani, E.; Shaki, H.; Mohanty, S.; Mehrali, M.; Arpanaei, A.; Gaharwar, A. K.; Dolatshahi-Pirouz, A. Engineering Complex Tissue-Like Microgel Arrays for Evaluating Stem Cell Differentiation. Sci. Rep. 2016, 6, 30445. doi:10.1038/srep30445.
  • Hall, B. K.; Miyake, T. Divide, Accumulate, Differentiate: Cell Condensation in Skeletal Development Revisited. Int. J. Dev. Biol. 1995, 39, 881–893.
  • Kale, S.; Biermann, S.; Edwards, C.; Tarnowski, C.; Morris, M.; Long, M. W. Three-Dimensional Cellular Development Is Essential for Ex Vivo Formation of Human Bone. Nat. Biotechnol. 2000, 18, 954–958. doi:10.1038/79439.
  • Yamaguchi, Y.; Ohno, J.; Sato, A.; Kido, H.; Fukushima, T. Mesenchymal Stem Cell Spheroids Exhibit Enhanced in-Vitro and in-Vivo Osteoregenerative Potential. BMC Biotechnol. 2014, 14, 105. doi:10.1186/s12896-014-0105-9.
  • Chan, H. F.; Zhang, Y.; Ho, Y.-P.; Chiu, Y.-L.; Jung, Y.; Leong, K. W. Rapid Formation of Multicellular Spheroids in Double-Emulsion Droplets with Controllable Microenvironment. Sci. Rep. 2013, 3, 3462. doi:10.1038/srep03462.
  • Boskey, A. L. Mineralization of Bones and Teeth. Elements 2007, 3, 385–391. doi:10.2113/GSELEMENTS.3.6.385.
  • Boskey, A. L. Bone Composition: Relationship to Bone Fragility and Antiosteoporotic Drug Effects. Bonekey Rep. 2013, 2, 447. doi:10.1038/bonekey.2013.181.
  • Rey, C.; Combes, C.; Drouet, C.; Glimcher, M. J. Bone Mineral: Update on Chemical Composition and Structure. Osteoporos. Int. 2009, 20, 1013–1021. doi:10.1007/s00198-009-0860-y.
  • Birkholz, M. N.; Agrawal, G.; Bergmann, C.; Schroder, R.; Lechner, S. J.; Pich, A.; Fischer, H. Calcium Phosphate/Microgel Composites for 3D Powderbed Printing of Ceramic Materials. Biomed. Tech. Biomed. Eng. 2016, 61, 267–279. doi:10.1515/bmt-2014-0141.
  • Dai, Z.; Shu, Y.; Wan, C.; Wu, C. Effects of Culture Substrate Made of Poly(N-Isopropylacrylamide-Co-Acrylic Acid) Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells. Molecules 2016, 21, 1192. doi:10.3390/molecules21091192.
  • Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011, 12, 1387–1408. doi:10.1021/bm200083n.
  • Ni, P.; Ding, Q.; Fan, M.; Liao, J.; Qian, Z.; Luo, J.; Li, X.; Luo, F.; Yang, Z.; Wei, Y. Injectable Thermosensitive PEG-PCL-PEG Hydrogel/Acellular Bone Matrix Composite for Bone Regeneration in Cranial Defects. Biomaterials 2014, 35, 236–248. doi:10.1016/j.biomaterials.2013.10.016.
  • Hoare, T. R.; Kohane, D. S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49, 1993–2007. doi:10.1016/j.polymer.2008.01.027.
  • Arun Kumar, R.; Sivashanmugam, A.; Deepthi, S.; Iseki, S.; Chennazhi, K. P.; Nair, S. V.; Jayakumar, R. Injectable Chitin-Poly(Epsilon-Caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2015, 7, 9399–9409. doi:10.1021/acsami.5b02685.
  • Schuldiner, M.; Yanuka, O.; Itskovitz-Eldor, J.; Melton, D. A.; Benvenisty, N. Effects of Eight Growth Factors on the Differentiation of Cells Derived from Human Embryonic Stem Cells. Proc. Natl. Acad. Sci. USA. 2000, 97, 11307–11312. doi:10.1073/pnas.97.21.11307.
  • Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell 2006, 126, 677–689. doi:10.1016/j.cell.2006.06.044.
  • Discher, D. E. Matrix Elasticity Directs Stem Cell Lineage—Soluble Factors That Limit Osteogenesis. Bone 2009, 44, S205–S206. doi:10.1016/j.bone.2009.03.025.
  • Dalby, M. J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M. O.; Herzyk, P.; Wilkinson, C. D.; Oreffo, R. O. The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder. Nat. Mater. 2007, 6, 997–1003. doi:10.1038/nmat2013.
  • Markert, L. D. A.; Lovmand, J.; Foss, M.; Lauridsen, R. H.; Lovmand, M.; Füchtbauer, E.-M.; Füchtbauer, A.; Wertz, K.; Besenbacher, F.; Pedersen, F. S.; Duch, M. Identification of Distinct Topographical Surface Microstructures Favoring Either Undifferentiated Expansion or Differentiation of Murine Embryonic Stem Cells. Stem Cells Dev. 2009, 18, 1331–1342. doi:10.1089/scd.2009.0114.
  • Lund, A. W.; Yener, B.; Stegemann, J. P.; Plopper, G. E. The Natural and Engineered 3D Microenvironment as a Regulatory Cue During Stem Cell Fate Determination. Tissue Eng. Part B Rev. 2009, 15, 371–380. doi:10.1089/ten.teb.2009.0270.
  • Tian, X. F.; Heng, B. C.; Ge, Z.; Lu, K.; Rufaihah, A. J.; Fan, V. T.; Yeo, J. F.; Cao, T. Comparison of Osteogenesis of Human Embryonic Stem Cells within 2D and 3D Culture Systems. Scand. J. Clin. Lab. Invest. 2008, 68, 58–67. doi:10.1080/00365510701466416.
  • Jabbari, E. Role of Substrate Microstructure on Osteogenic Differentiation of Mesenchymal Stem Cells. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 2010, 3543–3545. doi:10.1109/IEMBS.2010.5627489.
  • Mei, Y. Microarrayed Materials for Stem Cells. Mater. Today 2012, 15, 444–452. doi:10.1016/S1369-7021(12)70196-7.
  • Yang, F.; Cho, S.-W.; Son, S. M.; Hudson, S. P.; Bogatyrev, S.; Keung, L.; Kohane, D. S.; Langer, R.; Anderson, D. G. Combinatorial Extracellular Matrices for Human Embryonic Stem Cell Differentiation in 3D. Biomacromolecules 2010, 11, 1909–1914. doi:10.1021/bm100357t.
  • Yang, Y.; Bolikal, D.; Becker, M. L.; Kohn, J.; Zeiger, D. N.; Simon, C. G. Combinatorial Polymer Scaffold Libraries for Screening Cell-Biomaterial Interactions in 3D. Adv. Mater. 2008, 20, 2037–2043. doi:10.1002/adma.200702088.
  • Simon, C. G.; Jr.; Lin-Gibson, S. Combinatorial and High-Throughput Screening of Biomaterials. Adv. Mater. 2011, 23, 369–387. doi:10.1002/adma.201001763.
  • Revzin, A.; Rajagopalan, P.; Tilles, A. W.; Berthiaume, F.; Yarmush, M. L.; Toner, M. Designing a Hepatocellular Microenvironment with Protein Microarraying and Poly(Ethylene Glycol) Photolithography. Langmuir 2004, 20, 2999–3005. doi:10.1021/la035827w.
  • Falsey, J. R.; Renil, M.; Park, S.; Li, S.; Lam, K. S. Peptide and Small Molecule Microarray for High Throughput Cell Adhesion and Functional Assays. Bioconjug. Chem. 2001, 12, 346–353. doi:10.1021/bc000141q.
  • Hook, A. L.; Chang, C. Y.; Yang, J.; Luckett, J.; Cockayne, A.; Atkinson, S.; Mei, Y.; Bayston, R.; Irvine, D. J.; Langer, R.; et al. Combinatorial Discovery of Polymers Resistant to Bacterial Attachment. Nat. Biotechnol. 2012, 30, 868–875. doi:10.1038/nbt.2316.
  • Flaim, C. J.; Chien, S.; Bhatia, S. N. An Extracellular Matrix Microarray for Probing Cellular Differentiation. Nat. Meth. 2005, 2, 119–125. doi:10.1038/nmeth736.
  • Flaim, C. J.; Teng, D.; Chien, S.; Bhatia, S. N. Combinatorial Signaling Microenvironments for Studying Stem Cell Fate. Stem Cells Dev. 2008, 17, 29–39. doi:10.1089/scd.2007.0085.
  • Klim, J. R.; Li, L.; Wrighton, P. J.; Piekarczyk, M. S.; Kiessling, L. L. A Defined Glycosaminoglycan-Binding Substratum for Human Pluripotent Stem Cells. Nat. Methods 2010, 7, 989–994. doi:10.1038/nmeth.1532.
  • Brafman, D. A.; Chien, S.; Willert, K. Arrayed Cellular Microenvironments for Identifying Culture and Differentiation Conditions for Stem, Primary and Rare Cell Populations. Nat. Protoc. 2012, 7, 703–717. doi:10.1038/nprot.2012.017.
  • Soen, Y.; Mori, A.; Palmer, T. D.; Brown, P. O. Exploring the Regulation of Human Neural Precursor Cell Differentiation Using Arrays of Signaling Microenvironments. Mol. Syst. Biol. 2006, 2, 37. doi:10.1038/msb4100076.
  • Chen, X.; Bai, S.; Li, B.; Liu, H.; Wu, G.; Liu, S.; Zhao, Y. Fabrication of Gelatin Methacrylate/Nanohydroxyapatite Microgel Arrays for Periodontal Tissue Regeneration. Int J Nanomed. 2016, 11, 4707–4718. doi:10.2147/IJN.S111701.
  • Dolatshahi-Pirouz, A.; Nikkhah, M.; Gaharwar, A. K.; Hashmi, B.; Guermani, E.; Aliabadi, H.; Camci-Unal, G.; Ferrante, T.; Foss, M.; Ingber, D. E.; et al. A Combinatorial Cell-Laden Gel Microarray for Inducing Osteogenic Differentiation of Human Mesenchymal Stem Cells. Sci. Rep. 2014, 4, 3896. doi:10.1038/srep03896.
  • Rafiq, Q. A.; Coopman, K.; Nienow, A. W.; Hewitt, C. J. Systematic Microcarrier Screening and Agitated Culture Conditions Improves Human Mesenchymal Stem Cell Yield in Bioreactors. Biotechnol. J. 2016, 11, 473–486. doi:10.1002/biot.201400862.
  • dos Santos, F.; Andrade, P. Z.; Eibes, G.; da Silva, C. L.; Cabral, J. M. Ex Vivo Expansion of Human Mesenchymal Stem Cells on Microcarriers. Methods Mol. Biol. 2011, 698, 189–198. doi:10.1007/978-1-60761-999-4_15.
  • Rafiq, Q. A.; Brosnan, K. M.; Coopman, K.; Nienow, A. W.; Hewitt, C. J. Culture of Human Mesenchymal Stem Cells on Microcarriers in a 5 L Stirred-Tank Bioreactor. Biotechnol. Lett. 2013, 35, 1233–1245. doi:10.1007/s10529-013-1211-9.
  • Hewitt, C. J.; Lee, K.; Nienow, A. W.; Thomas, R. J.; Smith, M.; Thomas, C. R. Expansion of Human Mesenchymal Stem Cells on Microcarriers. Biotechnol. Lett. 2011, 33, 2325–2335. doi:10.1007/s10529-011-0695-4.
  • Das, A.; Barker, D. A.; Wang, T.; Lau, C. M.; Lin, Y.; Botchwey, E. A. Delivery of Bioactive Lipids from Composite Microgel-Microsphere Injectable Scaffolds Enhances Stem Cell Recruitment and Skeletal Repair. PLoS ONE 2014, 9, e101276. doi:10.1371/journal.pone.0101276.
  • Das, A.; Tanner, S.; Barker, D. A.; Green, D.; Botchwey, E. A. Delivery of S1p Receptor-Targeted Drugs via Biodegradable Polymer Scaffolds Enhances Bone Regeneration in a Critical Size Cranial Defect. J. Biomed. Mater. Res. A 2014, 102, 1210–1218. doi:10.1002/jbm.a.34779.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.