464
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synthesis of polyorganophosphazenes and fabrication of their blend microspheres and micro/nanofibers as drug delivery systems

ORCID Icon, , , , , , , , , & show all
Pages 545-566 | Received 20 Sep 2018, Accepted 25 Jan 2019, Published online: 01 Apr 2019

References

  • Teo, A. J. T.; Mishra, A.; Park, I.; Kim, Y. J.; Park, W. T.; Yoon, Y. J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016, 2, 454–472. DOI: 10.1021/acsbiomaterials.5b00429.
  • Swamy, B. Y.; Prasad, C. V.; Rao, K. C.; Subha, M. C. S. Preparation and Characterization of Poly (Hydroxy Ethyl Methyl Acrylate-co-Acrylic Acid) Microspheres for Drug Delivery Application. International Journal of Polymeric Materials. and Polymeric Biomaterials. 2013, 62, 700–705. DOI: 10.1080/00914037.2013.769229.
  • Balasundaram, G.; Webster, T. J. An Overview of Nano-Polymers for Orthopedic Applications. Macromol. Biosci. 2007, 7, 635–642. DOI: 10.1002/mabi.200600270.
  • Pushpamalar, J.; Veeramachineni, A. K.; Owh, C.; Loh, X. J. Biodegradable Polysaccharides for Controlled Drug Delivery. Chempluschem 2016, 81, 504–514. DOI: 10.1002/cplu.201600112.
  • Biazar, E. Application of Polymeric Nanofibers in Medical Designs, Part IV: Drug and Biological Materials Delivery. Int. J. Polym.Mater 2017, 66, 53–60. DOI: 10.1080/00914037.2016.1180621.
  • Neffe, A. T.; Grijpma, D. W.; Lendlein, A. Advanced Functional Polymers for Medicine. Macromol. Biosci. 2016, 16, 1743–1744. DOI: 10.1002/mabi.201600419.
  • Balk, M.; Grijpma, D. W.; Lendlein, A. Design and Processing of Advanced Functional Polymers for Medicine. Polym. Adv. Technol. 2017, 28, 1203–1205. DOI: 10.1002/pat.3980.
  • Anselme, K. Osteoblast Adhesion on Biomaterials. Review. Biomater. 2000, 21, 667–681. DOI: 10.1016/S0142-9612(99)00242-2.
  • Ryou, M. D. M.; Christopher C.; Thompson, M. D. Tissue Adhesives: A Review. Tech. Gastrointest. Endosc. 2006, 8, 33–37. DOI: 10.1016/j.tgie.2005.12.007.
  • Rizwan Ullah, K.; Li, W.; Haojie, Y.; Zain Ul, A.; Muhammad, A.; Jialiang, W.; Muhammad, H.; Raja Summe, U.; Zheng, D.; Xia, X. Poly(Organo)Phosphazenes: recent Progress in the Synthesis and Applications in Tissue Engineering and Drug Delivery. Russ. Chem. Rev. 2018, 87, 109–150.
  • Kang, T.; Li, F.; Baik, S.; Shao, W.; Ling, D.; Hyeon, T. Surface Design of Magnetic Nanoparticles for Stimuli-Responsive Cancer Imaging and Therapy. Biomaterials 2017, 136, 98–114. DOI: 10.1016/j.biomaterials.2017.05.013.
  • Ercole, F.; Davis, T. P.; Evans, R. A. Photo-Responsive Systems and Biomaterials: photochromic Polymers, Light-Triggered Self-Assembly, Surface Modification, Fluorescence Modulation and beyond. Polym. Chem. 2010, 1, 37–54. DOI: 10.1039/B9PY00300B.
  • Ying, H.; W, F. E.; Xinqiao, J. Chemical Synthesis of Biomimetic Hydrogels for Tissue Engineering. Polym. Int. 2017, 66, 1787–1799.
  • Ketabat, F.; Khorshidi, S.; Karkhaneh, A. Application of Minimally Invasive Injectable Conductive Hydrogels as Stimulating Scaffolds for Myocardial Tissue Engineering. Polym. Int. 2018, 67, 975–982. DOI: 10.1002/pi.5599.
  • Yurova, N. S.; Danchuk, A.; Mobarez, S. N.; Wongkaew, N.; Rusanova, T.; Baeumner, A. J.; Duerkop, A. Functional Electrospun Nanofibers for Multimodal Sensitive Detection of Biogenic Amines in Food via a Simple Dipstick Assay. Anal. Bioanal. Chem. 2018, 410, 1111–1121. DOI: 10.1007/s00216-017-0696-9.
  • Huang, J.; Wu, F.; Yu, Y.; Huang, H.; Zhang, S.; You, J. Lipoic Acid Based Core Cross-Linked Micelles for Multivalent Platforms: design, Synthesis and Application in Bio-Imaging and Drug Delivery. Org. Biomol. Chem. 2017, 15, 4798–4802. DOI: 10.1039/C7OB00927E.
  • Gu, S.; Yang, L.; Li, S.; Yang, J.; Zhang, B.; Yang, J. Thermo- and Glucose-Sensitive Microgels with Improved Salt Tolerance for Controlled Insulin Release in a Physiological Environment. Polym. Int. 2018, 0, 1256–1265. DOI: 10.1002/pi.5634.
  • Tomonori, W.; Naoki, T. Recent Advances in Nanofibrous Assemblies Based on β‐Sheet‐Forming Peptides for Biomedical Applications. Polym. Int. 2017, 66, 277–288.
  • Rothemund, S.; Teasdale, I. Preparation of Polyphosphazenes: A Tutorial Review. Chem. Soc. Rev. 2016, 45, 5200–5215. DOI: 10.1039/c6cs00340k.
  • Weikel, A. L.; Owens, S. G.; Fushimi, T.; Allcock, H. R. Synthesis and Characterization of Methionine- and Cysteine-Substituted Phosphazenes. Macromolecules 2010, 43, 5205–5210. DOI: 10.1021/ma1007013.
  • Nichol, J. L.; Morozowich, N. L.; Decker, T. E.; Allcock, H. R. Crosslinkable Citronellol Containing Polyphosphazenes and Their Biomedical Potential. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 2258–2265. DOI: 10.1002/pola.27236.
  • Weikel, A. L.; Owens, S. G.; Morozowich, N. L.; Deng, M.; Nair, L. S.; Laurencin, C. T.; Allcock, H. R. Miscibility of Choline-Substituted Polyphosphazenes with PLGA and Osteoblast Activity on Resulting Blends. Biomaterials 2010, 31, 8507–8515. DOI: 10.1016/j.biomaterials.2010.07.094.
  • Ogueri, K. S.; Escobar Ivirico, J. L.; Nair, L. S.; Allcock, H. R.; Laurencin, C. T. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. Regen. Eng. Transl. Med. 2017, 3, 15–31. DOI: 10.1007/s40883-016-0022-7.
  • Pant, B.; Park, M.; Ojha, G. P.; Kim, D. U.; Kim, H. Y.; Park, S. J. Electrospun Salicylic Acid/Polyurethane Composite Nanofibers for Biomedical Applications. Int. J. Polym. Mater. 2018, 67, 739–744. DOI: 10.1080/00914037.2017.1376200.
  • Zhao, W.; Liu, W.; Xu, R.; Wang, Y.; Jin, K.; Li, H. Fabrication and Characterization of Dual Drug-Loaded Poly (Lactic-co-Glycolic Acid) Fiber-Microsphere Composite Scaffolds. Int. J. Polym. Mater. 2018, 1–9. DOI: 10.1080/00914037.2018.1446139.
  • Amini-Fazl, M. S.; Mobedi, H.; Barzin, J. Incorporation of HSA Microparticles within the Taxol-Loaded in Situ Forming PLGA Microspheres: Synthesis, Characterization, and Drug Release. Int. J. Polym. Mater. 2014, 63, 632–640. DOI: 10.1080/00914037.2013.854237.
  • Babu, M.; Yadav, H. K. S.; Moin, A.; Shivakumar, H. G. In Vitro–in Vivo Evaluation of Poly(2-Hydroxyethyl Methacrylate-co-Methyl Methacrylate) Hydrogel Implants Containing Cisplatin. Acta. Pharm. Sin. B 2011, 1, 261–267. DOI: 10.1016/j.apsb.2011.09.001.
  • Singh, M. K.; Shokuhfar, T.; Gracio, J. J. D.; De Sousa, A. C. M.; Fereira, J. M. D.; Garmestani, H.; Ahzi, S. Hydroxyapatite Modified with Carbon-Nanotube-Reinforced Poly(Methyl Methacrylate): A Nanocomposite Material for Biomedical Applications. Adv. Funct. Mater. 2008, 18, 694–700. DOI: 10.1002/adfm.200700888.
  • Yan, X.; Gemeinhart, R. A. Cisplatin Delivery from Poly(Acrylic Acid-co-Methyl Methacrylate) Microparticles. J. Control. Release 2005, 106, 198–208. DOI: 10.1016/j.jconrel.2005.05.005.
  • Mestiri, M.; Benoit, J. P.; Hernigou, P.; Devissaguet, J. P.; Puisieux, F. Cisplatin-Loaded Poly(Methyl Methacrylate) Implants – a Sustained Drug-Delivery System. J. Control. Release 1995, 33, 107–113. DOI: 10.1016/0168-3659(94)00077-8.
  • Liu, F. J.; Guo, R.; Shen, M. W.; Wang, S. Y.; Shi, X. Y. Effect of Processing Variables on the Morphology of Electrospun Poly[(Lactic Acid)-co-(Glycolic Acid)] Nanofibers. Macromol. Mater. Eng. 2009, 294, 666–672. DOI: 10.1002/mame.200900110.
  • Zheng, F. Y.; Wang, S. G.; Shen, M. W.; Zhu, M. F.; Shi, X. Y. Antitumor Efficacy of Doxorubicin-Loaded Electrospun Nano-Hydroxyapatite-Poly(Lactic-co-Glycolic Acid) Composite Nanofibers. Polym. Chem. 2013, 4, 933–941. DOI: 10.1039/C2PY20779F.
  • Sethuraman, S.; Nair, L. S.; El-Amin, S.; Nguyen, M. T.; Singh, A.; Krogman, N.; Greish, Y. E.; Allcock, H. R.; Brown, P. W.; Laurencin, C. T. Mechanical Properties and Osteocompatibility of Novel Biodegradable Alanine Based Polyphosphazenes: Side Group Effects. Acta Biomater 2010, 6, 1931–1937. DOI: 10.1016/j.actbio.2009.12.012.
  • Hori, K.; Sano, M.; Suzuki, M.; Hanabusa, K. Preparation of Porous Polymer Materials Using Water-in-Oil Gel Emulsions as Templates. Polym. Int. 2018, 67, 909–916. DOI: 10.1002/pi.5579.
  • Uyen, N. T. L.; Brooke, F.; P, D. T.; Christopher, B.-K.; S. M. Core-Shell, H. Microspheres with Surface Grafted Poly(Vinyl Alcohol) as Drug Carriers for the Treatment of Hepatocellular Carcinoma. J. Polym. Sci. A. Polym. Chem. 2007, 45, 3256–3272.
  • Xing, G.; Lin, W.; Xiao, W.; Shaobing, Z. Polymer-Based Drug Delivery Systems for Cancer Treatment. J. Polym. Sci. A. Polym. Chem. 2016, 54, 3525–3550.
  • Ekström, A. M. Aspirin and Risk for Gastric Cancer: A Population-Based Case|[Ndash]|Control Study in Sweden. Br. J. Cancer 2001, 84, 965–968. DOI: 10.1054/bjoc.2001.1702.
  • Wang, Y.; Lu, Y.; Gong, J.; Yao, Y. Electrospun Nanofiber Regulates Assembly of Keratin and Vimentin Intermediate Filaments of PANC-1 Pancreatic Carcinoma Cells. Mater. Sci. Eng. C 2019, 96, 616–624. DOI: 10.1016/j.msec.2018.11.072.
  • Chen, Y. Y.; Liu, S.; Hou, Z. Y.; Ma, P. A.; Yang, D. M.; Li, C. X.; Lin, J. Multifunctional Electrospinning Composite Fibers for Orthotopic Cancer Treatment in Vivo. Nano Res. 2015, 8, 1917–1931. DOI: 10.1007/s12274-014-0701-y.
  • Indolfi, L.; Ligorio, M.; Ting, D. T.; Xega, K.; Tzafriri, A. R.; Bersani, F.; Aceto, N.; Thapar, V.; Fuchs, B. C.; Deshpande, V. A Tunable Delivery Platform to Provide Local Chemotherapy for Pancreatic Ductal Adenocarcinoma. Biomaterials 2016, 93, 71–82. DOI: 10.1016/j.biomaterials.2016.03.044.
  • Yi, H.-G.; Choi, Y.-J.; Kang, K. S.; Hong, J. M.; Pati, R. G.; Park, M. N.; Shim, I. K.; Lee, C. M.; Kim, S. C.; Cho, D.-W. A 3D-Printed Local Drug Delivery Patch for Pancreatic Cancer Growth Suppression. J. Control. Release 2016, 238, 231–241. DOI: 10.1016/j.jconrel.2016.06.015.
  • Huang, X. Z.; Chen, Y.; Wu, J.; Zhang, X.; Wu, C. C.; Zhang, C. Y.; Sun, S. S.; Chen, W. J. Aspirin and Non-Steroidal Anti-Inflammatory Drugs Use Reduce Gastric Cancer Risk: A Dose-Response Meta-Analysis. Oncotarget 2017, 8, 4781–4795.
  • Moyo, M.; Okonkwo, J. O.; Agyei, N. M. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes. Sensors 2012, 12, 923–953. DOI: 10.3390/s120100923.
  • Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of Nano/Micro Scale Poly(l-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials 2005, 26, 2603–2610. DOI: 10.1016/j.biomaterials.2004.06.051.
  • Li, X.; Su, Y.; Liu, S.; Tan, L.; Mo, X.; Ramakrishna, S. Encapsulation of Proteins in Poly(l-Lactide-co-Caprolactone) Fibers by Emulsion Electrospinning. Colloid. Surface. B 2010, 75, 418–424. DOI: 10.1016/j.colsurfb.2009.09.014.
  • Tiwari, S. K.; Tzezana, R.; Zussman, E.; Venkatraman, S. S. Optimizing Partition-Controlled Drug Release from Electrospun Core-Shell Fibers. Int. J. Pharm. 2010, 392, 209–217. DOI: 10.1016/j.ijpharm.2010.03.021.
  • Yuan, P.; Qiu, X.; Jin, R.; Bai, Y.; Liu, S.; Chen, X. One-Pot Preparation of Polymer Microspheres with Different Porous Structures to Sequentially Release Bio-Molecules for Cutaneous Regeneration. Biomater. Sci. 2018, 6, 820–826. DOI: 10.1039/C7BM00993C.
  • Biazar, E. Application of Polymeric Nanofibers in Medical Designs, Part I: Skin and Eye. Int. J. Polym. Mater. 2017, 66, 521–531. DOI: 10.1080/00914037.2016.1276062.
  • Wang, Q.; Jin, X. Q.; Sun, J. H.; Bai, S. Y.; Wu, X.; Panezai, H. Facile Synthesis and Fractal Feature of pH-Responsive Poly(Acrylic Acid) Hollow Microspheres for Ibuprofen Delivery. Int. J. Polym. Mater. 2018, 67, 896–904. DOI: 10.1080/00914037.2017.1393680.
  • Fuchs, K.; Duran, R.; Denys, A.; Bize, P. E.; Borchard, G.; Jordan, O. Drug-Eluting Embolic Microspheres for Local Drug Delivery - State of the Art. J. Control Release 2017, 262, 127–138. DOI: 10.1016/j.jconrel.2017.07.016.
  • Akram, M.; Yu, H.; Wang, L.; Khalid, H.; Abbasi, N. M.; Zain Ul, A.; Chen, Y.; Ren, F.; Saleem, M. Sustained Release of Hydrophilic Drug from Polyphosphazenes/Poly(Methyl Methacrylate) Based Microspheres and Their Degradation Study. Mater. Sci. Eng. C 2016, 58, 169–179. DOI: 10.1016/j.msec.2015.08.010.
  • Akram, M.; Wang, L.; Yu, H.; Khalid, H.; Abbasi, N. M.; Ul-Abdin, Z.; Chen, Y.; Sun, R.; Jie, S.; Saleem, M. Synthesis of Reductive Responsive Polyphosphazenes and Their Fabrication of Nanocarriers for Drug Delivery Application. Int. J. Polym. Mater. 2016, 65, 581–591. DOI: 10.1080/00914037.2016.1149847.
  • Konda, M.; Kauffmann, B.; Rasale, D. B.; Das, A. K. Structural and Morphological Diversity of Self-Assembled Synthetic γ-Amino Acid Containing Peptides. Org. Biomol. Chem. 2016, 14, 4089–4102. DOI: 10.1039/C6OB00380J.
  • Garcia Gonzalez, C. A.; Jin, M.; Gerth, J.; Alvarez Lorenzo, C.; Smirnova, I. Polysaccharide-Based Aerogel Microspheres for Oral Drug Delivery. Carbohydr. Polym. 2015, 117, 797–806. DOI: 10.1016/j.carbpol.2014.10.045.
  • Fu, J.; Liang, L.; Qiu, L. Y. In Situ Generated Gold Nanoparticle Hybrid Polymersomes for Water-Soluble Chemotherapeutics: Inhibited Leakage and ph-Responsive Intracellular Release. Adv. Funct. Mater. 2017, 27, 1604981. DOI: 10.1002/adfm.201604981.
  • Xu, J.; Zhao, Q.; Jin, Y.; Qiu, L. High Loading of Hydrophilic/Hydrophobic Doxorubicin into Polyphosphazene Polymersome for Breast Cancer Therapy. Nanomed. Nanotechnol. 2014, 10, 349–358. DOI: 10.1016/j.nano.2013.08.004.
  • Meng, Z. X.; Xu, X. X.; Zheng, W.; Zhou, H. M.; Li, L.; Zheng, Y. F.; Lou, X. Preparation and Characterization of Electrospun PLGA/Gelatin Nanofibers as a Potential Drug Delivery System. Colloids Surf. B Biointerfaces 2011, 84, 97–102. DOI: 10.1016/j.colsurfb.2010.12.022.
  • Karuppuswamy, P.; Venugopal, J. R.; Navaneethan, B.; Laiva, A. L.; Ramakrishna, S. Polycaprolactone Nanofibers for the Controlled Release of Tetracycline Hydrochloride. Mater. Lett. 2015, 141, 180–186. DOI: 10.1016/j.matlet.2014.11.044.
  • Zhang, J.; Qiu, L.; Li, X.; Jin, Y.; Zhu, K. Versatile Preparation of Fluorescent Particles Based on Polyphosphazenes: From Micro- to Nanoscale. Small 2007, 3, 2081–2093. DOI: 10.1002/smll.200700069.
  • Lee, W. L.; Widjaja, E.; Loo, S. C. One-Step Fabrication of Triple-Layered Polymeric Microparticles with Layer Localization of Drugs as a Novel Drug-Delivery System. Small 2010, 6, 1003–1011. DOI: 10.1002/smll.200901985.
  • Xiao, C. D.; Shen, X. C.; Tao, L. Modified Emulsion Solvent Evaporation Method for Fabricating Core-Shell Microspheres. Int. J. Pharm. 2013, 452, 227–232. DOI: 10.1016/j.ijpharm.2013.05.020.
  • Yen, H. C.; Cabral, H.; Mi, P.; Toh, K.; Matsumoto, Y.; Liu, X.; Koori, H.; Kim, A.; Miyazaki, K.; Miura, Y.; et al. Light-Induced Cytosolic Activation of Reduction-Sensitive Camptothecin-Loaded Polymeric Micelles for Spatiotemporally Controlled in Vivo Chemotherapy. ACS. Nano 2014, 8, 11591–11602. DOI: 10.1021/nn504836s.
  • Shen, Y.; Jin, E.; Zhang, B.; Murphy, C. J.; Sui, M.; Zhao, J.; Wang, J.; Tang, J.; Fan, M.; Van Kirk, E.; et al. Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery. J. Am. Chem. Soc. 2010, 132, 4259–4265. DOI: 10.1021/ja909475m.
  • Allcock, H. R.; Kugel, R. L. Synthesis of High Polymeric Alkoxy- and Aryloxyphosphonitriles. J. Am. Chem. Soc. 1965, 87, 4216–4217. DOI: 10.1021/ja01096a056.
  • Allcock, H. R.; Fuller, T. J.; Matsumura, K. Hydrolysis Pathways for Aminophosphazenes. Inorg. Chem. 1982, 21, 515–521. DOI: 10.1021/ic00132a009.
  • Amin, A. M.; Wang, L.; Yu, H. J.; Amer, W. A.; Gao, J. M.; Tai Y. L.; Huo, J.; Zhang, Y.; Zhang, L. Synthesis and Characterization of Poly[Bis(p-Oxybenzaldehyde Diethylamino)Phosphazenes], Poly[Bis(p-Oxybenzaldehyde)Phosphazenes], Poly[Bis(Diethylamino)Phosphazenes] and Their Self-Assembly Behaviors. J. Macromol. Sci. 2011, 48, 937–946. DOI: 10.1080/10601325.2011.614866.
  • Henke, H.; Wilfert, S.; Iturmendi, A.; Brüggemann, O.; Teasdale, I. Branched Polyphosphazenes with Controlled Dimensions. J. Polym. Sci. A Polym. Chem. 2013, 51, 4467–4473. DOI: 10.1002/pola.26865.
  • Morozowich, N. L.; Nichol, J. L.; Mondschein, R. J.; Allcock, H. R. Design and Examination of an Antioxidant-Containing Polyphosphazene Scaffold for Tissue Engineering. Polym. Chem. 2012, 3, 778–786. DOI: 10.1039/c2py00570k.
  • Zhang, J. X.; Qiu, L. Y.; Jin, Y.; Zhu, K. J. Physicochemical Characterization of Polymeric Micelles Constructed from Novel Amphiphilic Polyphosphazene with Poly(N-Isopropylacrylamide) and Ethyl 4-Aminobenzoate as Side Groups. Colloid. Surface. B 2005, 43, 123–130. DOI: 10.1016/j.colsurfb.2005.03.012.
  • Jiang, N.; Abe, H. Study on Crystalline/Crystalline Partially Miscible Polymer Blends of 6-Arm Poly(L-Lactide) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Polymer 2015, 60, 260–266. DOI: 10.1016/j.polymer.2015.01.060.
  • Hourston, D. J.; Lane, S.; Zhang, H. X. Toughened Thermoplastics.3. Blends of Poly(Butylene Terephthalate) with (Butadiene-co-Acrylonitrile) Rubbers. Polymer 1995, 36, 3051–3054. DOI: 10.1016/0032-3861(95)94358-Z.
  • Su, C. C.; Woo, E. M. Cure Kinetics and Morphology of Amine-Cured Tetraglycidyl-4,4′-Diaminodiphenylmethane Epoxy Blends with Poly(Ether Imide). Polymer 1995, 36, 2883–2894. DOI: 10.1016/0032-3861(95)94337-S.
  • Deng, M.; Nair, L. S.; Nukavarapu, S. P.; Kumbar, S. G.; Jiang, T.; Krogman, N. R.; Singh, A.; Allcock, H. R.; Laurencin, C. T. Miscibility and in Vitro Osteocompatibility of Biodegradable Blends of Poly[(Ethyl Alanato) (p-Phenyl Phenoxy) Phosphazene] and Poly(Lactic Acid-Glycolic Acid). Biomaterials 2008, 29, 337–349. DOI: 10.1016/j.biomaterials.2007.09.029.
  • Ambrosio, A. M.; Allcock, H. R.; Katti, D. S.; Laurencin, C. T. Degradable Polyphosphazene/Poly(Alpha-Hydroxyester) Blends: Degradation Studies. Biomaterials 2002, 23, 1667–1672. DOI: 10.1016/S0142-9612(01)00293-9.
  • Wu, W. B.; Chiu, W. Y.; Liau, W. B. Casting Solvent Effect on Crystallization Behavior of Poly(Vinyl Acetate) Poly(Ethylene Oxide) Blends: DSC Study. J. Appl. Polym. Sci. 1997, 64, 411–421. DOI: 10.1002/(SICI)1097-4628(19970418)64:3<411::AID-APP1>3.0.CO;2-N.
  • Hatefi, A.; Amsden, B. Camptothecin Delivery Methods. Pharm. Res. 2002, 19, 1389–1399.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.