318
Views
23
CrossRef citations to date
0
Altmetric
Articles

Biodegradable polyurethane/graphene oxide scaffolds for soft tissue engineering: in vivo behavior assessment

, , , , , , & show all
Pages 1101-1111 | Received 08 May 2019, Accepted 10 Aug 2019, Published online: 30 Aug 2019

References

  • Langer, R.; Vacanti, J. P. Tissue Engineering. Science 1993, 260, 920–926. doi:10.1126/science.8493529.
  • Vacanti, J. P.; Langer, R. L. Tissue Engineering: The Design and Fabrication of Living Replacement Devices for Surgical Reconstruction and Transplantation. Lancet 1999, 354, S32–S34. doi:10.1016/S0140-6736(99)90247-7.
  • Hayashi, T. Biodegradable Polymers for Biomedical Applications. Prog. Polym. Sci. 1994, 19, 663–702. doi:10.1016/0079-6700(94)90030-2.
  • Ashammakhi, N.; Rokkanen, P. Absorbable Polyglycolide Devices in Trauma and Bone Surgery. Biomaterials 1997, 18, 3–9. doi:10.1016/S0142-9612(96)00107-X.
  • O’Brien, F. J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today 2011, 14, 88–95.
  • Shen, Z.; Lu, D.; Li, Q.; Zhang, Z.; Zhu, Y. Synthesis and Characterization of Biodegradable Polyurethane for Hypopharyngeal Tissue Engineering. BioMed. Res. Int. 2015, 871202, 1–11. doi:10.1155/2015/871202.
  • Sobczak, M. Biodegradable Polyurethane Elastomers for Biomedical Applications – Synthesis Methods and Properties. Polym. Plast. Technol. Eng. 2015, 54, 155–172. doi:10.1080/03602559.2014.955201.
  • Wang, C.; Zheng, Y.; Sun, Y.; Fan, J.; Qin, Q.; Zhao, Z. A Novel Biodegradable Polyurethane Based on Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) and Poly(Ethylene Glycol) as Promising Biomaterials with the Improvement of Mechanical Properties and Hemocompatibility. Polym. Chem. 2016, 7, 6120–6132. doi:10.1039/C6PY01131D.
  • Sgarioto, M.; Adhikari, R.; Gunatillake, P. A.; Moore, T.; Patterson, J.; Nagel, M.-D.; Malherbe, F. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated In Vitro Degradation and Cell Viability of Degradation Products. Front. Bioeng. Biotechnol. 2015, 3, 52–51. doi:10.3389/fbioe.2015.00052.
  • Jiménez-Gallegos, R.; Rodríguez-Lorenzo, L. M.; San Roman, J.; Téllez-Jurado, L. Preparation, Bioactivity, and Cytotoxicity Studies of Poly(Ester Urethane)s/SiO2 Nanocomposites. J. Thermoplast. Compos. Mater. 2019, 32, 108–122. doi:10.1177/0892705717744831.
  • Kenry, Lee, W. C.; Loh, K. P.; Lim, C. T. When Stem Cells Meet Graphene: Opportunities and Challenges in Regenerative Medicine. Biomaterials 2018, 155, 236–250.
  • Cheng, S.-J.; Chiu, H.-Y.; Kumar, P. V.; Hsieh, K. Y.; Yang, J.-W.; Lin, Y.-R.; Shen, Y.-C.; Chen, G.-Y. Simultaneous Drug Delivery and Cellular Imaging Using Graphene Oxide. Biomater. Sci. 2018, 6, 813–819. doi:10.1039/C7BM01192J.
  • Wang, Z.; Shen, H.; Song, S.; Zhang, L.; Chen, W.; Dai, J.; Zhang, Z. Graphene Oxide Incorporated PLGA Nanofibrous Scaffold for Solid Phase Gene Delivery into Mesenchymal Stem Cells. J. Nanosci. Nanotechnol. 2018, 18, 2286–2293. doi:10.1166/jnn.2018.14362.
  • Jeong, J.-T.; Choi, M.-K.; Sim, Y.; Lim, J.-T.; Kim, G.-S.; Seong, M.-J.; Hyung, J.-H.; Kim, K. S.; Umar, A.; Lee, S.-K. Effect of Graphene Oxide Ratio on the Cell Adhesion and Growth Behavior on a Graphene Oxide Coated Silicon Substrate. Sci. Rep. 2016, 6, 33835, 1–10.
  • Liao, K. H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607–2615. doi:10.1021/am200428v.
  • Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of Graphene Oxide. Nanoscale Res. Lett. 2011, 6, 8. doi:10.1007/s11671-010-9751-6.
  • Chang, Y.; Yang, S. T.; Liu, J. H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In Vitro Toxicity Evaluation of Graphene Oxide on A549 Cells. Toxicol. Lett. 2011, 200, 201–210. doi:10.1016/j.toxlet.2010.11.016.
  • Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. doi:10.1021/acs.chemrev.8b00593.
  • Woods, I.; Flanagan, T. C. Electrospinning of Biomimetic Scaffolds for Tissue-Engineered Vascular Grafts: Threading the Path. Expert Rev. Cardiovasc. Ther. 2014, 12, 815–832. doi:10.1586/14779072.2014.925397.
  • Kanani, A. G.; Bahrami, S. H. Review on Electrospun Nanofibers Scaffold and Biomedical Applications. Trends Biomater. Artif. Organs 2010, 24, 93–115.
  • Ghobeira, R.; Philips, C.; Declercq, H.; Cools, P.; De Geyter, N.; Cornelissen, R.; Morent, R. Effects of Different Sterilization Methods on the Physico-Chemical and Bioresponsive Properties of Plasma-Treated Polycaprolactone Films. Biomed. Mater. 2017, 12, 015017. doi:10.1088/1748-605X/aa51d5.
  • Dai, Z.; Ronholm, J.; Tian, Y.; Sethi, B.; Cao, X. Sterilization Techniques for Biodegradable Scaffolds in Tissue Engineering Applications. J. Tissue Eng. 2016, 7, 1–13.
  • Ullah Khan, S.; Saleh, T. A.; Wahab, A.; Ullah Khan, M. H.; Khan, D.; Ullah Khan, W.; Rahim, A.; Kamal, S.; Ullah Khan, F.; Fahad, S. Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold. IJN 2018, 13, 733–762. doi:10.2147/IJN.S153167.
  • Lendlein, A.; Neuenschwander, P.; Suter, U. W. Tissue-Compatible Multiblock Copolymers for Medical Applications, Controllable in Degradation Rate and Mechanical Properties. Macromol. Chem. Phys. 1998, 199, 2785–2796. doi:10.1002/(SICI)1521-3935(19981201)199:12<2785::AID-MACP2785>3.0.CO;2-X.
  • Lendlein, A.; Neuenschwander, P.; Suter, U. W. Hydroxy-Telechelic Copolyesters with Well Defined Sequence Structure through Ring-Opening Polymerization. Macromol. Chem. Phys. 2000, 201, 1067–1076. doi:10.1002/1521-3935(20000701)201:11<1067::AID-MACP1067>3.0.CO;2-Y.
  • Stojanov, L.; Salih, N.; Mirceski, V. Synthesis and Characterization of Silver Nanoparticles. KNOWLEDGE – International Journal 2019, 31, 643–646.
  • Mirčeski, V. Effect of Silver Particles Deposited at the Water|Nitrobenzene Interface on the Voltammetric Response of Thin-Film Electrodes. Electrochem. Commun. 2006, 8, 123–128. doi:10.1016/j.elecom.2005.10.030.
  • Bürgisser, G. M.; Calcagni, M.; Müller, A.; Bonavoglia, E.; Fessel, G.; Snedeker, J. G.; Giovanoli, P.; Buschmann, J. Prevention of Peritendinous Adhesions Using an Electrospun Degrapol Polymer Tube: A Histological, Ultrasonographic, and Biomechanical Study in Rabbits. BioMed Res. Int. 2014, 656240, 1–11. doi:10.1155/2014/656240.
  • Evrova, O.; Houska, J.; Welti, M.; Bonavoglia, E.; Calcagni, M.; Giovanoli, P.; Vogel, V.; Buschmann, J. Bioactive, Elastic, and Biodegradable Emulsion Electrospun DegraPol Tube Delivering PDGF-BB for Tendon Rupture Repair. Macromol. Biosci. 2016, 16, 1048–1063. doi:10.1002/mabi.201500455.
  • Song, J.; Gao, H.; Zhu, G.; Cao, X.; Shi, X.; Wang, Y. The Preparation and Characterization of Polycaprolactone/Graphene Oxide Biocomposite Nanofiber Scaffolds and Their Application for Directing Cell Behaviours. Carbon 2015, 95, 1039–1050. doi:10.1016/j.carbon.2015.09.011.
  • Zhang, Q.; Du, Q.; Zhao, Y.; Chen, F.; Wang, Z.; Zhang, Y.; Ni, H.; Deng, H.; Li, Y.; Chen, Y. Graphene Oxide-Modified Electrospun Polyvinyl Alcohol Nanofibrous Scaffolds with Potential as Skin Wound Dressings. RSC Adv. 2017, 7, 28826–28836. doi:10.1039/C7RA03997B.
  • Iatridis, J. C.; Wu, J.; Yandow, J. A.; Langevin, H. M. Subcutaneous Tissue Mechanical Behavior Is Linear and Viscoelastic under Uniaxial Tension. Connective Tissue Res. 2003, 44, 208–217. doi:10.1080/714040520.
  • Holzapfel, G. A. Biomechanics of Soft Tissue. In Handbook of Materials Behavior Models; LeMaitre, J., Ed.; Elsevier Inc.: San Diego, CA, 2001; pp 1057–1071.
  • Lee, E. J.; Lee, J. H.; Shin, Y. C.; Hwang, D.-G.; Jin Soo Kim, J. S.; Jin, O. S.; Linhua Jin, L.; Hong, S. W.; Han, D.-W. Graphene Oxide-Decorated PLGA/Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds. Biomater. Res. 2014, 18, 18–24.
  • Firoozabady, A. S.; Aidun, A.; Kowsari-Esfahan, R.; Allahyari, A. Characterization and Evaluation of Graphene Oxide Incorporated into Nanofibrous Scaffold for Bone Tissue Engineering. JTM 2019, 2, 1–13.
  • Heidari, M.; Bahrami, H.; Ranjbar-Mohammadi, M. Fabrication, Optimization and Characterization of Electrospun Poly(Caprolactone)/Gelatin/Graphene Nanofibrous Mats. Mater. Sci. Eng. C 2017, 78, 218–229. doi:10.1016/j.msec.2017.04.095.
  • Menzies, K. L.; Jones, L. The Impact of Contact Angle on the Biocompatibility of biomaterials. Optom. Vis. Sci. 2010, 87, 387–399. doi:10.1097/OPX.0b013e3181da863e.
  • Stroncek, J. D.; Reichert, W. M. Overview of Wound Healing in Different Tissue Types. In Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment; Reichert, W. M., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, 2008; pp 3–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.