266
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effects of glycosaminoglycan supplementation in the chondrogenic differentiation of bone marrow- and synovial- derived mesenchymal stem/stromal cells on 3D-extruded poly (ε-caprolactone) scaffolds

, , , , , & show all
Pages 207-222 | Received 25 Aug 2019, Accepted 05 Dec 2019, Published online: 02 Jan 2020

References

  • Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J. L.; Im, H.-J. Osteoarthritis: Toward a Comprehensive Understanding of Pathological Mechanism. Bone Res. 2017, 5, 16044. DOI: 10.1038/boneres.2016.44.
  • Tan, A. R.; Hung, C. T. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs. Stem Cells Transl. Med. 2017, 6, 1295–1303. DOI: 10.1002/sctm.16-0271.
  • Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells 2007, 25, 2739–2749. DOI: 10.1634/stemcells.2007-0197.
  • Koga, H.; Muneta, T.; Nagase, T.; Nimura, A.; Ju, Y. J.; Mochizuki, T.; Sekiya, I. Comparison of Mesenchymal Tissues-Derived Stem Cells for in Vivo Chondrogenesis: Suitable Conditions for Cell Therapy of Cartilage Defects in Rabbit. Cell Tissue Res. 2008, 333, 207–215. DOI: 10.1007/s00441-008-0633-5.
  • Sakaguchi, Y.; Sekiya, I.; Yagishita, K.; Muneta, T. Comparison of Human Stem Cells Derived from Various Mesenchymal Tissues: Superiority of Synovium as a Cell Source. Arthritis Rheum. 2005, 52, 2521–2529. DOI: 10.1002/art.21212.
  • Yoshimura, H.; Muneta, T.; Nimura, A.; Yokoyama, A.; Koga, H.; Sekiya, I. Comparison of Rat Mesenchymal Stem Cells Derived from Bone Marrow, Synovium, Periosteum, Adipose Tissue, and Muscle. Cell Tissue Res. 2007, 327, 449–462. DOI: 10.1007/s00441-006-0308-z.
  • Huang, Y.-Z.; Silini, A.; Parolini, O.; Xie, H.-Q.; Huang, Y.-C.; Zhang, Y.; Deng, L. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives. Stem Cell Rev. Rep. 2017, 13, 575–586. DOI: 10.1007/s12015-017-9753-1.
  • Futami, I.; Ishijima, M.; Kaneko, H.; Tsuji, K.; Ichikawa-Tomikawa, N.; Sadatsuki, R.; Muneta, T.; Arikawa-Hirasawa, E.; Sekiya, I.; Kaneko, K. Isolation and Characterization of Multipotential Mesenchymal Cells from the Mouse Synovium. PLoS One 2012, 7, e45517. DOI: 10.1371/journal.pone.0045517.
  • Fan, J.; Varshney, R. R.; Ren, L.; Cai, D.; Wang, D. A. Synovium-Derived Mesenchymal Stem Cells: A New Cell Source for Musculoskeletal Regeneration. Tissue Eng. B. Rev 2009, 15, 75–86. DOI: 10.1089/ten.teb.2008.0586.
  • Shirasawa, S.; Sekiya, I.; Sakaguchi, Y.; Yagishita, K.; Ichinose, S.; Muneta, T. In Vitro Chondrogenesis of Human Synovium‐Derived Mesenchymal Stem Cells: Optimal Condition and Comparison with Bone Marrow‐Derived Cells. J. Cell. Biochem. 2006, 97, 84–97. DOI: 10.1002/jcb.20546.
  • Mota, C.; Puppi, D.; Chiellini, F.; Chiellini, E. Additive Manufacturing Techniques for the Production of Tissue Engineering Constructs. J. Tissue Eng. Regen. Med. 2015, 9, 174–190. DOI: 10.1002/term.1635.
  • Hoque, M. E.; Chuan, Y. L.; Pashby, I. Extrusion Based Rapid Prototyping Technique: An Advanced Platform for Tissue Engineering Scaffold Fabrication. Biopolymers 2012, 97, 83–93. DOI: 10.1002/bip.21701.
  • Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer - Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
  • Theodoridis, K.; Aggelidou, E.; Vavilis, T.; Manthou, M. E.; Tsimponis, A.; Demiri, E. C.; Boukla, A.; Salpistis, C.; Bakopoulou, A.; Mihailidis, A.; Kritis, A. Hyaline Cartilage Next Generation Implants from Adipose Tissue Derived Mesenchymal Stem Cells: Comparative Study on 3D-Printed Polycaprolactone Scaffold Patterns. J. Tissue Eng. Regen. Med. 2019, 13, 342–355. DOI: 10.1002/term.2798.
  • Kim, H. J.; Lee, J. H.; Il Im, G. Chondrogenesis Using Mesenchymal Stem Cells and PCL Scaffolds. J. Biomed. Mater. Res. 2010, 92, 659–666. DOI: 10.1002/jbm.a.32414.
  • Vinatier, C.; Mrugala, D.; Jorgensen, C.; Guicheux, J.; Noël, G. Cartilage Engineering: A Crucial Combination of Cells, Biomaterials and Biofactors. Trends Biotechnol. 2009, 27, 307–314. DOI: 10.1016/jtibtech.2009.02.005.
  • Pattappa, G.; Johnstone, B.; Zellner, J.; Docheva, D.; Angele, P. The Importance of Physioxia in Mesenchymal Stem Cell Chondrogenesis and the Mechanisms Controlling Its Response. Int. J. Mol. Sci. 2019, 20, 1–28. DOI: 10.3390/ijms20030484.
  • Zhou, S.; Cui, Z.; Urban, J. P. G. Factors Influencing the Oxygen Concentration Gradient from the Synovial Surface of Articular Cartilage to the Cartilage-Bone Interface: A Modeling Study. Arthritis Rheum. 2004, 50, 3915–3924. DOI: 10.1002/art.20675.
  • Lund‐Olesen, K. Oxygen Tension in Synovial Fluids. Arthritis Rheum. 1970, 13, 769–776. DOI: 10.1002/art.1780130606.
  • Ferro, T.; Santhagunam, A.; Madeira, C.; Salgueiro, J. B.; da Silva, C. L.; Cabral, J. M. S. Successful Isolation and Ex Vivo Expansion of Human Mesenchymal Stem/Stromal Cells Obtained from Different Synovial Tissue-Derived (Biopsy) Samples. J. Cell. Physiol. 2019, 234, 3973–3984. DOI: 10.1002/jcp.27202.
  • Dos Santos, F.; Andrade, P. Z.; Boura, J. S.; Abecasis, M. M.; da Silva, C. L.; Cabral, J. M. S. Ex Vivo Expansion of Human Mesenchymal Stem Cells: A More Effective Cell Proliferation Kinetics and Metabolism under Hypoxia. J. Cell. Physiol. 2010, 223, 27–35. DOI: 10.1002/jcp.21987.
  • Adesida, A. B.; Mulet-Sierra, A.; Jomha, N. M. Hypoxia Mediated Isolation and Expansion Enhances the Chondrogenic Capacity of Bone Marrow Mesenchymal Stromal Cells. Stem Cell Res. Ther. 2012, 3, 9. DOI: 10.1186/scrt10022385573.
  • Leijten, J.; Georgi, N.; Moreira Teixeira, L.; van Blitterswijk, C. A.; Post, J. N.; Karperien, M. Metabolic Programming of Mesenchymal Stromal Cells by Oxygen Tension Directs Chondrogenic Cell Fate. Proc. Natl. Acad. Sci. 2014, 111, 13954–13959. DOI: 10.1073/pnas.1410977111.
  • Bae, H. C.; Park, H. J.; Wang, S. Y.; Yang, H. R.; Lee, M. C.; Han, H.-S. Hypoxic Condition Enhances Chondrogenesis in Synovium-Derived Mesenchymal Stem Cells. Biomater. Res. 2018, 22, 1–8. DOI: 10.1186/s40824-018-0134-x.
  • Bornes, T. D.; Jomha, N. M.; Mulet-Sierra, A.; Adesida, A. B. Hypoxic Culture of Bone Marrow-Derived Mesenchymal Stromal Stem Cells Differentially Enhances in Vitro Chondrogenesis within Cell-Seeded Collagen and Hyaluronic Acid Porous Scaffolds. Stem Cell Res Ther. 2015, 6, 84. DOI: 10.1186/s13287-015-0075-4.
  • Gasimli, L.; Linhardt, R. J.; Dordick, J. S. Proteoglycans in Stem Cells. Biotechnol. Appl. Biochem. 2012, 59, 65–76. DOI: 10.1002/bab.1002.
  • Knudson, C. B.; Knudson, W. Cartilage Proteoglycans. Semin. Cell Dev. Biol. 2001, 12, 69–78. DOI: 10.1007/978-3-319-29568-8_1.
  • Oliveira, J. T.; Reis, R. L. Polysaccharide-Based Materials for Cartilage Tissue Engineering Applications. J. Tissue Eng. Regen. Med. 2011, 5, 421–436. DOI: 10.1002/term.335.
  • Wang, M.; Liu, X.; Lyu, Z.; Gu, H.; Li, D.; Chen, H. Glycosaminoglycans (GAGs) and GAG Mimetics Regulate the Behavior of Stem Cell Differentiation. Colloids Surf. B Biointerfaces 2017, 150, 175–182. DOI: 10.1016/jcolsurfb.2016.11.022.
  • Sawatjui, N.; Damrongrungruang, T.; Leeanansaksiri, W.; Jearanaikoon, P.; Hongeng, S.; Limpaiboon, T. Silk Fibroin/Gelatin-Chondroitin Sulfate-Hyaluronic Acid Effectively Enhances in Vitro Chondrogenesis of Bone Marrow Mesenchymal Stem Cells. Mater. Sci. Eng. C 2015, 52, 90–96. DOI: 10.1016/j.msec.2015.03.043.
  • Varghese, S.; Hwang, N. S.; Canver, A. C.; Theprungsirikul, P.; Lin, D. W.; Elisseeff, J. Chondroitin Sulfate Based Niches for Chondrogenic Differentiation of Mesenchymal Stem Cells. Matrix Biol. 2008, 27, 12–21. DOI: 10.1016/j.matbio.2007.07.002.
  • Pfeifer, C. G.; Berner, A.; Koch, M.; Krutsch, W.; Kujat, R.; Angele, P.; Nerlich, M.; Zellner, J. Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a Hyaluronic Acid-Gelatin Composite Scaffold. Materials 2016, 9, 381. DOI: 10.3390/ma9050381.
  • Santhagunam, A.; Dos Santos, F.; Madeira, C.; Salgueiro, J. B.; Cabral, J. M. S. Isolation and Ex Vivo Expansion of Synovial Mesenchymal Stromal Cells for Cartilage Repair. Cytotherapy 2014, 16, 440–453. DOI: 10.1016/j.jcyt.2013.10.010.
  • Domingos, M.; Dinucci, D.; Cometa, S.; Alderighi, M.; Bártolo, P. J.; Chiellini, F. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications. Int. J. Biomater. 2009, 2009, 239643DOI: 10.1155/2009/239643.
  • Silva, J. C.; Moura, C. S.; Alves, N.; Cabral, J. M. S.; Ferreira, F. C. Effects of Different Fibre Alignments and Bioactive Coatings on Mesenchymal Stem/Stromal Cell Adhesion and Proliferation in Poly (ɛ-Caprolactone) Scaffolds towards Cartilage Repair. Procedia Manuf. 2017, 12, 132–140. DOI: 10.1016/j.promfg.2017.08.034.
  • Bollet, A. J.; Nance, J. L. Biochemical Findings in Normal and Osteoarthritic Articular Cartilage. II. Chondroitin Sulfate Concentration and Chain Length, Water, and Ash Content. J. Clin. Invest. 1966, 45, 1170–1177. DOI: 10.1172/JCI105423.
  • Nakayama, Y.; Narita, T.; Mori, A.; Uesaka, S.; Miyazaki, K.; Ito, H. The Effects of Age and Sex on Chondroitin Sulfates in Normal Synovial Fluid. Arthritis Rheum. 2002, 46, 2105–2108. DOI: 10.1002/art.10424.
  • Mazzucco, D.; Scott, R.; Spector, M. Composition of Joint Fluid in Patients Undergoing Total Knee Replacement and Revision Arthroplasty: Correlation with Flow Properties. Biomaterials 2004, 25, 4433–4445. DOI: 10.1016/j.biomaterials.2003.11.023.
  • Dingle, J. T.; Horsfield, P.; Fell, H. B.; Barratt, M. E. J. Breakdown of Proteoglycan and Collagen Induced in Pig Articular Cartilage in Organ Culture. Ann. Rheum. Dis. 1975, 34, 303–311. DOI: 10.1136/ard.34.4.303.
  • Nam, J.; Johnson, J.; Lannutti, J. J.; Agarwal, S. Modulation of Embryonic Mesenchymal Progenitor Cell Differentiation via Control over Pure Mechanical Modulus in Electrospun Nanofibers. Acta Biomater. 2011, 7, 1516–1524. DOI: 10.1016/j.actbio.2010.11.022.
  • Olubamiji, A. D.; Izadifar, Z.; Si, J. L.; Cooper, D. M. L.; Eames, B. F.; Chen, D. X. B. Modulating Mechanical Behaviour of 3D-Printed Cartilage-Mimetic PCL Scaffolds: Influence of Molecular Weight and Pore Geometry. Biofabrication 2016, 8, 025020. DOI: 10.1088/1758-5090/8/2/025020.
  • Zhao, Y.; Tan, K.; Zhou, Y.; Ye, Z.; Tan, W. S. A Combinatorial Variation in Surface Chemistry and Pore Size of Three-Dimensional Porous Poly(ε-Caprolactone) Scaffolds Modulates the Behaviors of Mesenchymal Stem Cells. Mater. Sci. Eng. C 2016, 59, 193–202. DOI: 10.1016/j.msec.2015.10.017.
  • Im, G. I.; Ko, J. Y.; Lee, J. H. Chondrogenesis of Adipose Stem Cells in a Porous Polymer Scaffold: Influence of the Pore Size. Cell Transplant. 2012, 21, 2397–2405. DOI: 10.3727/096368912X638865.
  • Jeon, O.; Alsberg, E. Regulation of Stem Cell Fate in a Three-Dimensional Micropatterned Dual-Crosslinked Hydrogel System. Adv. Funct. Mater. 2013, 23, 4764–4775. DOI: 10.1002/adfm.201300529.
  • Nieto, A.; Dua, R.; Zhang, C.; Boesl, B.; Ramaswamy, S.; Agarwal, A. Three Dimensional Graphene Foam/Polymer Hybrid as a High Strength Biocompatible Scaffold. Adv. Funct. Mater. 2015, 25, 3916–3924. DOI: 10.1002/adfm.201500876.
  • Grayson, W. L.; Zhao, F.; Izadpanah, R.; Bunnell, B.; Ma, T. Effects of Hypoxia on Human Mesenchymal Stem Cell Expansion and Plasticity in 3D Constructs. J. Cell. Physiol. 2006, 207, 331–339. DOI: 10.1002/jcp.20571.
  • Huang, X.; Hou, Y.; Zhong, L.; Huang, D.; Qian, H.; Karperien, M.; Chen, W. Promoted Chondrogenesis of Cocultured Chondrocytes and Mesenchymal Stem Cells under Hypoxia Using in-Situ Forming Degradable Hydrogel Scaffolds. Biomacromolecules 2018, 19, 94–102. DOI: 10.1021/acs.biomac.7b01271.
  • Rodenas-Rochina, J.; Kelly, D. J.; Gómez Ribelles, J. L.; Lebourg, M. Influence of Oxygen Levels on Chondrogenesis of Porcine Mesenchymal Stem Cells Cultured in Polycaprolactone Scaffolds. J. Biomed. Mater. Res. A 2017, 105, 1684–1691. DOI: 10.1002/jbm.a.36043.
  • Das, R.; Jahr, H.; Van Osch, G. J. V. M.; Farrell, E. The Role of Hypoxia in Bone Marrow – Derived Mesenchymal Stem Cells: Considerations for Regenerative Medicine Approaches. Tissue Eng. B. Rev 2010, 16, 159–168. DOI: 10.1089/ten.teb.2009.0296.
  • Fink, T.; Abildtrup, L.; Fogd, K.; Abdallah, B. M.; Kassem, M.; Ebbesen, P.; Zachar, V. Induction of Adipocyte-Like Phenotype in Human Mesenchymal Stem Cells by Hypoxia. Stem Cells 2004, 22, 1346–1355. DOI: 10.1634/stemcells.2004-0038.
  • Malladi, P.; Xu, Y.; Chiou, M.; Giaccia, A. J.; Longaker, M. T. Effect of Reduced Oxygen Tension on Chondrogenesis and Osteogenesis in Adipose-Derived Mesenchymal Cells. Am. J. Physiol. Cell Physiol 2006, 290, 1139–1146. DOI: 10.1152/ajpcell.00415.2005.
  • Gaut, C.; Sugaya, K. Critical Review on the Physical and Mechanical Factors Involved in Tissue Engineering of Cartilage. Regen. Med. 2015, 10, 665–679. DOI: 10.2217/rme.15.31.
  • Temple-Wong, M. M.; Ren, S.; Quach, P.; Hansen, B. C.; Chen, A. C.; Hasegawa, A.; D'Lima, D. D.; Koziol, J.; Masuda, K.; Lotz, M. K.; Sah, R. L. Hyaluronan Concentration and Size Distribution in Human Knee Synovial Fluid: Variations with Age and Cartilage degeneration. Arthritis Res. Ther. 2016, 18, 18. DOI: 10.1186/s13075-016-0922-4.
  • Balazs, E. A. The Physical Properties of Synovial Fluid and the Special Role of Hyaluronic Acid. Disord. Knee 1974, 2, 61–74.
  • Schwartz, Z.; Griffon, D. J.; Fredericks, L. P.; Lee, H.-B.; Weng, H.-Y. Hyaluronic Acid and Chondrogenesis of Murine Bone Marrow Mesenchymal Stem Cells in Chitosan Sponges. Am. J. Vet. Res. 2011, 72, 42–50. DOI: 10.2460/ajvr.72.1.42.
  • Christiansen-Weber, T.; Noskov, A.; Cardiff, D.; Garitaonandia, I.; Dillberger, A.; Semechkin, A.; Gonzalez, R.; Kern, R. Supplementation of Specific Carbohydrates Results in Enhanced Deposition of Chondrogenic-Specific Matrix during Mesenchymal Stem Cell Differentiation. J. Tissue Eng. Regen. Med. 2018, 12, 1261–1272. DOI: 10.1002/term.2658.
  • Chen, W. C.; Yao, C. L.; Chu, I. M.; Wei, Y. H. Compare the Effects of Chondrogenesis by Culture of Human Mesenchymal Stem Cells with Various Type of the Chondroitin Sulfate C. J. Biosci. Bioeng. 2011, 111, 226–231. DOI: 10.1016/j.jbiosec.2010.10.002.
  • Ogata, Y.; Mabuchi, Y.; Yoshida, M.; Suto, E. G.; Suzuki, N.; Muneta, T.; Sekiya, I.; Akazawa, C. Purified Human Synovium Mesenchymal Stem Cells as a Good Resource for Cartilage Regeneration. PLoS One 2015, 10, e0129096. DOI: 10.1371/journal.pone.0129096.
  • Dashtdar, H.; Murali, M. R.; Selvaratnam, L.; Balaji Raghavendran, H.; Suhaeb, A. M.; Ahmad, T. S.; Kamarul, T. Ultra-Structural Changes and Expression of Chondrogenic and Hypertrophic Genes during Chondrogenic Differentiation of Mesenchymal Stromal Cells in Alginate Beads. PeerJ 2016, 4, e1650. DOI: 10.7717/peerj.1650.
  • Wu, Y.; Stoddart, M. J.; Wuertz-Kozak, K.; Grad, S.; Alini, M.; Ferguson, S. J. Hyaluronan Supplementation as a Mechanical Regulator of Cartilage Tissue Development under Joint-Kinematic Mimicking Loading. J. R Soc. Interface 2017, 14, 20170255. DOI: 10.1098/rsif.2017.0255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.