429
Views
11
CrossRef citations to date
0
Altmetric
Articles

Preparation and optimization of biodegradable self-assembled PCL-PEG-PCL nano-sized micelles for drug delivery systems

&
Pages 328-337 | Received 08 Apr 2019, Accepted 03 Jan 2020, Published online: 13 Jan 2020

References

  • Anh Nguyen, T. H.; Nguyen, V. C. Formation of Nanoparticles in Aqueous Solution from Poly(ε-Caprolactone)-Poly(Ethylene Glycol)-Poly(ε-Caprolactone). Adv. Nat. Sci. Nanosci. Nanotechnol. 2010, 1, 25012–25016. DOI: 10.1088/2043-6254/1/2/025012.
  • Tan, C.; Wang, Y.; Fan, W. Exploring Polymeric Micelles for Improved Delivery of Anticancer Agents: Recent Developments in Preclinical Studies. Pharmaceutics 2013, 5, 201–219. DOI: 10.3390/pharmaceutics5010201.
  • Zhang, L.; Hu, Y.; Jiang, X.; Yang, C.; Lu, W.; Yang, Y. H. Camptothecin Derivative-Loaded Poly(Caprolactone-co-Lactide)-b-PEG-b-Poly(Caprolactone-co-Lactide) Nanoparticles and Their Biodistribution in Mice. J. Control Rel. 2004, 96, 135–148. DOI: 10.1016/j.jconrel.2004.01.010.
  • Barghi, L.; Asgari, D.; Barar, J.; Valizadeh, H. Synthesis of PCEC Copolymers with Controlled Molecular Weight Using Full Factorial Methodology. Adv. Pharm. Bull. 2015, 5, 51–56. DOI: 10.5681/apb.2015.007.
  • Eatemadi, A.; Darabi, M.; Afraidooni, L.; Zarghami, N.; Daraee, H.; Eskandari, L.; Mellatyar, H.; Akbarzadeh, A. Comparison, Synthesis and Evaluation of Anticancer Drug-Loaded Polymeric Nanoparticles on Breast Cancer Cell Lines. Artif Cells Nanomed. Biotechnol. 2016, 44, 1008–1017. DOI: 10.3109/21691401.2015.1008510.
  • Zhang, L.; Zhu, D.; Dong, X.; Sun, H.; Song, C.; Wang, C.; Kong, D. Folate-Modified Lipid-Polymer Hybrid Nanoparticles for Targeted Paclitaxel Delivery. Int. J. Nanomed. 2015, 10, 2101–2114. DOI: 10.2147/IJN.S77667.
  • Ge, H.; Hu, Y.; Jiang, X.; Cheng, D.; Yuan, Y.; Bi, H.; Yang, C. Preparation, Characterization, and Drug Release Behaviors of Drug Nimodipine-Loaded Poly(Epsilon-Caprolactone)-Poly(Ethylene Oxide)-Poly(Epsilon-Caprolactone) Amphiphilic Triblock Copolymer Micelles. J. Pharm. Sci. 2002, 91, 1463–1473. DOI: 10.1002/jps.10143.
  • Kim, J. H.; Ramasamy, T.; Tran, T. H.; Choi, J. Y.; Cho, H. J.; Yong, C. S.; Kim, J. O. Polyelectrolyte Complex Micelles by Self-Assembly of Polypeptide-Based Triblock Copolymer for Doxorubicin Delivery. Asian J. Pharm. Sci. 2014, 9, 191–198. DOI: 10.1016/j.ajps.2014.05.001.
  • Gökçe Kocabay, Ö.; İsmail, O. Synthesis and Characterization of Poly(ε-Caprolactone)-Poly(Ethylene Glycol)-Poly(ε-Caprolactone) Copolymers: Investigation of the Effect of Blocks on Micellization. Rev. Roum. Chim. 2018, 63, 1157–1167.
  • Hu, Y.; Xie, J.; Tong, Y. W.; Wang, C.-H. Effect of PEG Conformation and Particle Size on the Cellular Uptake Efficiency of Nanoparticles with the HepG2 Cells. J. Control Rel. 2007, 118, 7–17. DOI: 10.1016/j.jconrel.2006.11.028.
  • Manjili, H. K.; Sharafi, A.; Danafar, H.; Hosseini, M.; Ramazani, A.; Ghasemi, M. H. Poly(Caprolactone)-Poly(Ethylene Glycol)-Poly-(Caprolactone) (PCL-PEG-PCL) Nanoparticles: A Valuable and Efficient System for In Vitro and In Vivo Delivery of Curcumin. RSC Adv. 2016, 6, 14403–14415. DOI: 10.1039/C5RA24942B.
  • Lapi, A. M.; Altomare, A.; Alderighi, M.; Corti, A.; Dessy, A.; Chiellini, F.; Solimando, A.; Solaro, R. Multiblock Copolymers of ε-Caprolactone and Ethylene Glycol Containing Periodic Side-Chain Carboxyl Groups: Synthesis, Characterization, and Nanoparticle Preparation. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3800–3809. DOI: 10.1002/pola.26795.
  • Hu, Y.; Zhang, L.; Cao, Y.; Ge, H.; Jiang, X.; Yang, C. Degradation Behavior of Poly(ε-Caprolactone)-b-Poly(Ethylene Glycol)-b-Poly(ε-Caprolactone) Micelles in Aqueous Solution. Biomacromolecules 2004, 5, 1756–1762. DOI: 10.1021/bm049845j.
  • Huang, Y.; Gao, H.; Gou, M.; Ye, H.; Liu, Y.; Gao, Y.; Peng, F.; Qian, Z.; Cen, X.; Zhao, Y. Acute Toxicity and Genotoxicity Studies on Poly(ɛ-Caprolactone)-Poly(Ethylene Glycol)-Poly(ɛ-Caprolactone) Nanomaterials. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2010, 696, 101–106. DOI: 10.1016/j.mrgentox.2009.12.016.
  • Suksiriworapong, J.; Sripha, K.; Kreuter, J.; Junyaprasert, V. B. Functionalized (Poly(ε-Caprolactone))2-Poly(Ethylene Glycol) Nanoparticles with Grafting Nicotinic Acid as Drug Carriers. Int. J. Pharm. 2012, 423, 562–570. DOI: 10.1016/j.ijpharm.2011.11.033.
  • Cuong, N.-V.; Chen, Y.-T.; Hsieh, M.-F. Doxorubicin-Loaded Micelles of Y-Shaped PEG-(PCL)2 Against Drug-Resistant Breast Cancer Cells. Biomed. Eng. Appl. Basis Commun. 2013, 25, 1340009. DOI: 10.4015/S1016237213400097.
  • Kushwaha, A. K.; Vuddanda, P. R.; Karunanidhi, P.; Singh, S. K.; Singh, S. Development and Evaluation of Solid Lipid Nanoparticles of Raloxifene Hydrochloride for Enhanced Bioavailability. BioMed. Res. Int 2013, 2013, 1–10. DOI: 10.1155/2013/584549.
  • Bajelan, E.; Haeri, A.; Vali, A. M.; Ostad, S. N.; Dadashzadeh, S. Co-Delivery of Doxorubicin and PSC 833 (Valspodar) by Stealth Nanoliposomes for Efficient Overcoming of Multidrug Resistance. J. Pharm. Pharm. Sci. 2012, 15, 568–582. DOI: 10.18433/J3SC7J.
  • Couvreur, P.; Barratt, G.; Fattal, E.; Legrand, P.; Vauthier, C. Nanocapsule Technology: A Review. Crit. Rev. Ther. Drug Carrier Syst. 2002, 19, 99–134. DOI: 10.1615/critrevtherdrugcarriersyst.v19.i2.10.
  • Verma, A.; Stellacci, F. Effect of Surface Properties on Nanoparticle-Cell Interactions. Small 2010, 6, 12–21. DOI: 10.1002/smll.200901158.
  • Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano-Bio Interface. Nat. Mater. 2009, 8, 543–557. DOI: 10.1038/nmat2442.
  • Sunderland, C. J.; Steiert, M.; Talmadge, J. E.; Derfus, A. M.; Barry, S. E. Targeted Nanoparticles for Detecting and Treating Cancer. Drug Dev. Res. 2006, 67, 70–93. DOI: 10.1002/ddr.20069.
  • Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Mol. Pharm. 2008, 5, 505–515. DOI: 10.1021/mp800051m.
  • Gao, Z.; Zhang, L.; Sun, Y. Nanotechnology Applied to Overcome Tumor Drug Resistance. J Control Release 2012, 162, 45–55. DOI: 10.1016/j.jconrel.2012.05.051.
  • Azouz, L.; Dahmoune, F.; Rezgui, F.; G'Sell, C. Full Factorial Design Optimization of Anti-inflammatory Drug Release by PCL-PEG-PCL Microspheres. Mater. Sci. Eng. C. 2016, 58, 412–419. DOI: 10.1016/j.msec.2015.08.058.
  • Barreto, J. A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in Cancer Imaging and Therapy. Adv. Mater. 2011, 23, H18–H40. DOI: 10.1002/adma.201100140.
  • Singh, R.; Lillard, J. W. Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86, 215–223. DOI: 10.1016/j.yexmp.2008.12.004.
  • Zamani, S.; Khoee, S. Preparation of Core-Shell Chitosan/PCL-PEG Triblock Copolymer Nanoparticles with ABA and BAB Morphologies: Effect of Intraparticle Interactions on Physicochemical Properties. Polymer 2012, 53, 5723–5736. DOI: 10.1016/j.polymer.2012.09.051.
  • Gong, C. Y.; Wang, Y. J.; Wang, X. H.; Wei, X. W.; Wu, Q. J.; Wang, B. L.; Dong, P. W.; Chen, L. J.; Luo, F.; Qian, Z. Y. Biodegradable Self-Assembled PEG-PCL-PEG Micelles for Hydrophobic Drug Delivery, Part 2: In Vitro and In Vivo Toxicity Evaluation. J. Nanopart. Res. 2011, 13, 721–731. DOI: 10.1007/s11051-010-0071-7.
  • Cruz, L. J.; Tacken, P. J.; Fokkink, R.; Figdor, C. G. The Influence of PEG Chain Length and Targeting Moiety on Antibody-Mediated Delivery of Nanoparticle Vaccines to Human Dendritic Cells. Biomaterials 2011, 32, 6791–6803. DOI: 10.1016/j.biomaterials.2011.04.082.
  • Zhang, L.; Chen, Z.; Wang, H.; Wu, S.; Zhao, K.; Sun, H.; Kong, D.; Wang, C.; Leng, X.; Zhu, D. Preparation and Evaluation of PCL-PEG-PCL Polymeric Nanoparticles for Doxorubicin Delivery Against Breast Cancer. RSC Adv. 2016, 6, 54727–54737. DOI: 10.1039/x0xx00000x.
  • Guo, F.; Guo, D.; Zhang, W.; Yan, Q.; Yang, Y.; Hong, W.; Yang, G. Preparation of Curcumin-Loaded PCL-PEG-PCL Triblock Copolymeric Nanoparticles by a Microchannel Technology. Eur. J. Pharm. Sci. 2017, 99, 328–336. DOI: 10.1016/j.ejps.2017.01.001.
  • Li, Y. –M.; Jiang, T.; Lv, Y.; Wu, Y.; He, F.; Zhuo, R. –X. Amphiphilic Copolymers with Pendent Carboxyl Groups for High-Efficiency Loading and Controlled Release of Doxorubicin. Colloids Surf. B Biointerfaces 2015, 132, 54–61. DOI: 10.1016/j.colsurfb.2015.04.066.
  • Gref, R.; Minamitake, Y.; Peracchia, M.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable Long-Circulating Polymeric Nanospheres. Science 1994, 263, 1600–1603. DOI: 10.1126/science.8128245.
  • Dreaden, E. C.; Austin, L. A.; Mackey, M. A.; El-Sayed, M. A. Size Matters: Gold Nanoparticles in Targeted Cancer Drug Delivery. Ther. Deliv. 2012, 3, 457–478. DOI: 10.4155/tde.12.21.
  • Zamboni, W. C.; Torchilin, V.; Patri, A. K.; Hrkach, J.; Stern, S.; Lee, R.; Nel, A.; Panaro, N. J.; Grodzinski, P. Best Practices in Cancer Nanotechnology: Perspective from NCI Nanotechnology Alliance. Clin. Cancer Res. 2012, 18, 3229–3241. DOI: 10.1158/1078-0432.CCR-11-2938.
  • Oberdörster, G. Safety Assessment for Nanotechnology and Nanomedicine: Concepts of Nanotoxicology. J. Intern. Med. 2010, 267, 89–105. DOI: 10.1111/j.1365-2796.2009.02187.x.
  • Naha, P. C.; Chhour, P.; Cormode, D. P. Systematic in Vitro Toxicological Screening of Gold Nanoparticles Designed for Nanomedicine Applications. Toxicol. In Vitro 2015, 29, 1445–1453. DOI: 10.1016/j.tiv.2015.05.022.
  • He, Q.; Zhang, Z.; Gao, Y.; Shi, J.; Li, Y. Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano- and Microparticles. Small 2009, 5, 2722–2729. DOI: 10.1002/smll.200900923.
  • Tran, T.-Q.-M.; Hsieh, M.-F.; Chang, K.-L.; Pho, Q.-H.; Nguyen, V.-C.; Cheng, C.-Y.; Huang, C.-M. Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal Propionibacterium Acnes. Polymers 2016, 8, 1–19. DOI: 10.3390/polym8090321.
  • Ryu, J.; Jeong, Y. I.; Kim, I. S.; Lee, J. H.; Nah, J. W.; Kim, S. H. Clonazepam Release from Core-Shell Type Nanoparticles of Poly(Epsilon-Caprolactone)/Poly(Ethylene Glycol)/Poly(Epsilon-Caprolactone) Triblock Copolymers. Int. J. Pharm. 2000, 200, 231–242. DOI: 10.1016/S0378-5173(00)00392-6.
  • Chan, J. M.; Zhang, L.; Yuet, K. P.; Liao, G.; Rhee, J. –W.; Langer, R.; Farokhzad, O. C. PLGA-Lecithin-PEG Core-Shell Nanoparticles for Controlled Drug Delivery. Biomaterials 2009, 30, 1627–1634. DOI: 10.1016/j.biomaterials.2008.12.013.
  • Gou, M.; Zheng, L.; Peng, X.; Men, K.; Zheng, X.; Zeng, S.; Guo, G.; Luo, F.; Zhao, X.; Chen, L.; et al. Poly(ε-Caprolactone)-Poly(Ethylene Glycol)-Poly(ε-Caprolactone) (PCL-PEG-PCL) Nanoparticles for Honokiol Delivery In Vitro. Int. J. Pharm. 2009, 375, 170–176. DOI: 10.1016/j.ijpharm.2009.04.007.
  • Zhou, S.; Deng, X.; Yang, H. Biodegradable Poly(ε-Caprolactone)-Poly(Ethylene Glycol) Block Copolymers: Characterization and Their Use as Drug Carriers for a Controlled Delivery System. Biomaterials 2003, 24, 3563–3570. DOI: 10.1016/S0142-9612(03)00207-2.
  • Lin, W.-J.; Juang, L.-W.; Lin, C.-C. Stability and Release Performance of a Series of Pegylated Copolymeric Micelles. Pharm. Res. 2003, 20, 668–673. DOI: 10.1023/A:1023215320026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.