117
Views
3
CrossRef citations to date
0
Altmetric
Articles

Tailoring size and release kinetics of κ/ι-hybrid carrageenan microgels via a surfactant-assisted technique

, ORCID Icon, , , &
Pages 338-344 | Received 01 Oct 2019, Accepted 11 Jan 2020, Published online: 25 Jan 2020

References

  • Li, Z.; Ngai, T. Microgel Particles at the Fluid-Fluid Interfaces. Nanoscale. 2013, 5, 1399–1410. DOI: 10.1039/c2nr33503d.
  • Zhou, X.; Qi, Y.; Zhang, Z.; Nie, J.; Huang, Y.; Du, B. Novel Engineered Microgels with Amphipathic Network Structures for Simultaneous Tumor and Inflammation Depression. ACS Appl. Mater. Interf. 2018, 10, 10501–10512. DOI: 10.1021/acsami.8b02382.
  • He, H.; Chen, S.; Zhou, J.; Dou, Y.; Song, L.; Che, L.; Zhou, X.; Chen, X.; Jia, Y.; Zhang, J.; et al. Cyclodextrin-Derived pH-Responsive Nanoparticles for Delivery of Paclitaxel. Biomaterials. 2013, 34, 5344–5358. DOI: 10.1016/j.biomaterials.2013.03.068.
  • Vinogradov, S. V. Nanogels in the Race for Drug Delivery. Nanomedicine. 2010, 5, 165–168. DOI: 10.2217/nnm.09.103.
  • Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E. J.; Zhong, Z. Click Hydrogels, Microgels and Nanogels: Emerging Platforms for Drug Delivery and Tissue Engineering. Biomaterials. 2014, 35, 4969–4985. DOI: 10.1016/j.biomaterials.2014.03.001.
  • Cunha, L.; Grenha, A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar Drugs. 2016, 14, 42. DOI: 10.3390/md14030042.
  • Liu, J.; Zhan, X.; Wan, J.; Wang, Y.; Wang, C. Review for Carrageenan-Based Pharmaceutical Biomaterials: favourable Physical Features versus Adverse Biological Effects. Carbohydr. Polym. 2015, 121, 27–36. DOI: 10.1016/j.carbpol.2014.11.063.
  • Bixler, H. J. Recent Developments in Manufacturing and Marketing Carrageenan. Hydrobiologia. 1996, 326–327, 35–57. DOI: 10.1007/BF00047785.
  • Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and Its Applications in Drug Delivery. Carbohydr. Polym. 2014, 103, 1–11. DOI: 10.1016/j.carbpol.2013.12.008.
  • Keppeler, S.; Ellis, A.; Jacquier, J. Cross-Linked Carrageenan Beads for Controlled Release Delivery Systems. Carbohydr. Polym. 2009, 78, 973–977. DOI: 10.1016/j.carbpol.2009.07.029.
  • Rowe, R. C.; Sheskey, P.; Quinn, M. Handbook of Pharmaceutical Excipients. Washington, DC: Pharmaceutical Press and American Pharmacist Association, 2009.
  • Senthil Kumar, P.; Arivuchelvan, A.; Jagadeeswaran, A.; Punniamurthy, N.; Selvaraj, P.; Richard Jagatheesan, P. N.; Mekala, P. Formulation of Enrofloxacin SLNs and Its Pharmacokinetics in Emu (Dromaius novaehollandiae) Birds. Appl. Nanosci. 2015, 5, 661–671. DOI: 10.1007/s13204-014-0361-y.
  • Li, H. M.; Tian, J.; Zhang, Z. R.; Luo, X. Q.; Yu, Z. G. Pharmacokinetics Studies of Enrofloxacin Injectable in Situ Forming Gel in Dogs. J. Vet. Pharmacol. Therap. 2016, 39, 144–148. DOI: 10.1111/jvp.12255.
  • Ellis, A.; Jacquier, J. C. Manufacture of Food Grade κ-Carrageenan Microspheres. J. Food Eng. 2009, 94, 316–320. DOI: 10.1016/j.jfoodeng.2009.03.030.
  • Tomoda, K.; Asahiyama, M.; Ohtsuki, E.; Nakajima, T.; Terada, H.; Kanebako, M.; Inagi, T.; Makino, K. Preparation and Properties of Carrageenan Microspheres Containing Allopurinol and Local Anesthetic Agents for the Treatment of Oral Mucositis. Colloids Surf. B. 2009, 71, 27–35. DOI: 10.1016/j.colsurfb.2009.01.003.
  • Nanaki, S. G.; Kyzas, G. Z.; Tzereme, A.; Papageorgiou, M.; Kostoglou, M.; Bikiaris, D. N.; Lambropoulou, D. A. Synthesis and Characterization of Modified Carrageenan Microparticles for the Removal of Pharmaceuticals from Aqueous Solutions. Colloids Surf. B Biointerf. 2015, 127, 256–265. DOI: 10.1016/j.colsurfb.2015.01.053.
  • Alnaief, M.; Obaidat, R.; Mashaqbeh, H. Effect of Processing Parameters on Preparation of Carrageenan Aerogel Microparticles. Carbohydr Polym. 2018, 180, 264–275. DOI: 10.1016/j.carbpol.2017.10.038.
  • Singh, S.; Thakur G.; Avadhani, K. Transport of Indomethacin from Kappa-Carrageenan Based Nanogel. J. Bioeng. Biomed. Sci. 2016, 6, 10–13.
  • Daniel-da-Silva, A. L.; Ferreira, L.; Gil, A. M.; Trindade, T. Synthesis and Swelling Behavior of Temperature Responsive κ-Carrageenan Micro- and Nanogels. J. Colloid Interf. Sci. 2011, 355, 512–517. DOI: 10.1016/j.jcis.2010.12.071.
  • Helgason, T.; Awad, T. S.; Kristbergsson, K.; McClements, D. J.; Weiss, J. Effect of Surfactant Surface Coverage on Formation of Solid Lipid Nanoparticles (SLN). J. Colloid Interf. Sci. 2009, 334, 75–81. DOI: 10.1016/j.jcis.2009.03.012.
  • Ping, G.; Guo, R. Ionic Liquid Induced Transition from Wormlike to Rod or Spherical Micelles in Mixed Nonionic Surfactant Systems. J. Chem. Eng. Data. 2010, 55, 3590–3597. DOI: 10.1021/je100209x.
  • Leser, M. E.; Sagalowicz, L.; Michel, M.; Watzke, H. J. Self-Assembly of Polar Food Lipids. Adv. Colloid Interf. Sci. 123–126, 125–136. DOI: 10.1016/j.cis.2006.07.003.
  • Wang, W.; Wang, Y. J.; Wang, D. Q. Dual Effects of Tween 80 on Protein Stability. Int. J. Pharm. 2008, 347, 31–38. DOI: 10.1016/j.ijpharm.2007.06.042.
  • Kazemimostaghim, M.; Rajkhowa, R.; Tsuzuki, T.; Wang, X. Ultrafine Silk Powder from Biocompatible Surfactant-Assisted Milling. Powder Technol. 2013, 249, 253–257. DOI: 10.1016/j.powtec.2013.08.028.
  • Corvaglia, S.; Rodriguez, S.; Bardi, G.; Torres, F. G.; Lopez, D. Chitin Whiskers Reinforced Carrageenan Films as Low Adhesion Cell Substrates. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 574–580. DOI: 10.1080/00914037.2016.1149846.
  • Rodriguez, S. A.; Weese, E.; Nakamatsu, J.; Torres, F. Development of Biopolymer Nanocomposites Based on Polysaccharides Obtained from Red Algae Chondracanthus chamissoi Reinforced with Chitin Whiskers and Montmorillonite. Polym. Plast. Technol. Eng. 2016, 55, 1557–1564.
  • Rodríguez, S.; Gatto, F.; Pesce, L.; Canale, C.; Pompa, P. P.; Bardi, G.; Lopez, D.; Torres, F. G. Monitoring Cell Substrate Interactions in Exopolysaccharide-Based Films Reinforced with Chitin Whiskers and Starch Nanoparticles Used as Cell Substrates. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 333–339. DOI: 10.1080/00914037.2017.1297942.
  • Kolesnyk, I.; Konovalova, V.; Burban, A. Alginate/κ-Carrageenan Microspheres and Their Application for Protein Drugs Controlled Release. Chem. Chem. Technol. 2015, 9, 486–492.
  • Song, M.; Song, J.; Ning, A.; Cui, B.; Cui, S.; Zhou, Y.; An, W.; Dong, X.; Zhang, G. Feasibility Study of Silica Sol as the Carrier of a Hydrophobic Drug in Aqueous Solution Using Enrofloxacin as the Model. Mater. Sci. Eng. C. 2010, 30, 58–61. DOI: 10.1016/j.msec.2009.08.008.
  • Yan, W.; Hu, S.; Jing, C. Enrofloxacin Sorption on Smectite Clays: Effects of pH, Cations, and Humic Acid. J. Colloid Interf. Sci. 2012, 372, 141–147. DOI: 10.1016/j.jcis.2012.01.016.
  • Bhattacharjee, S. DLS and Zeta potential - What They Are and What They Are Not? J. Control. Release. 2016, 235, 337–351. DOI: 10.1016/j.jconrel.2016.06.017.
  • Joseph, E.; Singhvi, G. Multifunctional Nanocrystals for Cancer Therapy: A Potential Nanocarrier. In Nanomaterials for Drug Delivery and Therapy, Grumezescu, A. M., Ed.; Elsevier: Amsterdam, 2019; pp 91–116.
  • Huang, X.; Brazel, C. S. On the Importance and Mechanisms of Burst Release in Matrix-Controlled Drug Delivery Systems. J. Control. Release 2001, 73, 121–136. DOI: 10.1016/S0168-3659(01)00248-6.
  • Seedher, N.; Agarwal, P. Various Solvent Systems for Solubility Enhancement of Enrofloxacin. Indian J. Pharm. Sci. 2009, 71, 82. DOI: 10.4103/0250-474X.51958.
  • Ritger, P. L.; Peppas, N. A. A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release. 1987, 5, 23–36. DOI: 10.1016/0168-3659(87)90034-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.