428
Views
4
CrossRef citations to date
0
Altmetric
Articles

Castor oil reinforced polymer hybrids for skin tissue augmentation

, ORCID Icon, , ORCID Icon, , , & show all
Pages 530-544 | Received 01 Oct 2019, Accepted 08 Mar 2020, Published online: 24 Mar 2020

References

  • Spicer, C. D. Hydrogel Scaffolds for Tissue Engineering: The Importance of Polymer Choice. Polym. Chem. 2020, 11, 184–219. DOI: 10.1039/C9PY01021A.
  • Wang, L.; Neumann, M.; Fu, T.; Li, W.; Cheng, X.; Su, B.-L. Porous and Responsive Hydrogels for Cell Therapy. Curr. Opin. Colloid Interf. Sci. 2018, 38, 135–157.
  • Khan, A. F.; Afzal, A.; Chaudhary, A. A.; Saleem, M.; Shahzadi, L.; Jamal, A.; Yar, M.; Habib, A.; Rehman, I. U. (Hydroxypropyl)Methylcellulose Mediated Synthesis of Highly Porous Composite Scaffolds for Trabecular Bone Repair Applications. Sci. Adv. Mater. 2015, 7, 1177–1186. DOI: 10.1166/sam.2015.2246.
  • Iqbal, N.; Khan, A. S.; Asif, A.; Yar, M.; Haycock, J. W.; Rehman, I. U. Recent Concepts in Biodegradable Polymers for Tissue Engineering Paradigms: A Critical Review. Int. Mater. Rev. 2019, 64, 91–126. DOI: 10.1080/09506608.2018.1460943.
  • Li, Y.; Rodrigues, J.; Tomás, H. Injectable and Biodegradable Hydrogels: gelation, Biodegradation and Biomedical Applications. Chem. Soc. Rev. 2012, 41, 2193–2221. DOI: 10.1039/C1CS15203C.
  • Rhodes, C. S.; Alexander, C. M.; Berretta, J. M.; Courtney, H. S.; Beenken, K. E.; Smeltzer, M. S.; Bumgardner, J. D.; Haggard, W. O.; Jennings, J. A. Evaluation of a Chitosan-Polyethylene Glycol Paste as a Local Antibiotic Delivery Device. WJO. 2017, 8, 130–141. DOI: 10.5312/wjo.v8.i2.130.
  • Oleshko A, N. Cell Compound of Wound Surface after the Chitosan Membranes Application. Eur. J. Med. Series B. 2014, 1, 27–43. DOI: 10.13187/ejm.s.b.2014.1.27
  • Li, M.; Han, M.; Sun, Y.; Hua, Y.; Chen, G.; Zhang, L. Oligoarginine Mediated Collagen/Chitosan Gel Composite for Cutaneous Wound Healing. Int. J. Biol. Macromol. 2018. DOI: 10.1016/j.ijbiomac.2018.03.101.
  • Jiang, Q.; Zhou, W.; Wang, J.; Tang, R.; Zhang, D.; Wang, X. Hypromellose Succinate-Crosslinked Chitosan Hydrogel Films for Potential Wound Dressing. Int. J. Biol. Macromol. 2016, 91, 85–91. DOI: 10.1016/j.ijbiomac.2016.05.077.
  • Maleki, G.; Milani, J. M. Effect of Guar Gum, Xanthan Gum, CMC and HPMC on Dough Rhealogy and Physical Properties of Barbari Bread. FSTR. 2013, 19, 353–358. DOI: 10.3136/fstr.19.353.
  • Siepmann, J.; Kranz, H.; Bodmeier, R.; Peppas, N. A. HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics. Pharm. Res. 1999, 16, 1748–1756. DOI: 10.1023/A:1018914301328.
  • Chirico, S.; Dalmoro, A.; Lamberti, G.; Russo, G.; Titomanlio, G. Analysis and Modeling of Swelling and Erosion Behavior for Pure HPMC Tablet. J. Control Release. 2007, 122, 181–188. DOI: 10.1016/j.jconrel.2007.07.001.
  • Sudhakar, Y.; Kuotsu, K.; Bandyopadhyay, A. K. Buccal Bioadhesive Drug Delivery–a Promising Option for Orally Less Efficient Drugs. J. Control Release. 2006, 114, 15–40. DOI: 10.1016/j.jconrel.2006.04.012.
  • Liu, L.; Liu, D.; Wang, M.; Du, G.; Chen, J. Preparation and Characterization of Sponge-like Composites by Cross-Linking Hyaluronic Acid and Carboxymethylcellulose Sodium with Adipic Dihydrazide. Eur. Polym. J. 2007, 43, 2672–2681. DOI: 10.1016/j.eurpolymj.2007.02.045.
  • Ramli, N. A.; Wong, T. W. Sodium Carboxymethylcellulose Scaffolds and Their Physicochemical Effects on Partial Thickness Wound Healing. Int. J. Pharm. 2011, 403, 73–82. DOI: 10.1016/j.ijpharm.2010.10.023.
  • Wong, T. W.; Ramli, N. A. Carboxymethylcellulose Film for Bacterial Wound Infection Control and Healing. Carbohydr. Polym. 2014, 112, 367–375. DOI: 10.1016/j.carbpol.2014.06.002.
  • Grip, J.; Engstad, R. E.; Skjaeveland, I.; Škalko-Basnet, N.; Holsaeter, A. M. Sprayable Carbopol Hydrogel with Soluble Beta-1,3/1,6-Glucan as an Active Ingredient for Wound Healing – Development and In-Vivo Evaluation. Eur. J. Pharm. Sci. 2017, 107, 24–31. DOI: 10.1016/j.ejps.2017.06.029.
  • Li, J.; Li, Y.; Lee, T. C.; Huang, Q. Structure and Physical Properties of Zein/Pluronic f127 Composite Films. J. Agric. Food Chem. 2013, 61, 1309–1318. DOI: 10.1021/jf3043055.
  • Fuentes, S.; Dubo, J.; Barraza, N.; González, R.; Veloso, E. Hybrid Chitosan–Pluronic F-127 Films with BaTiO3:Co Nanoparticles: Synthesis and Properties. J. Magn. Magn. Mater. 2015, 377, 65–69. DOI: 10.1016/j.jmmm.2014.10.050.
  • Kant, V.; Gopal, A.; Kumar, D.; Gopalkrishnan, A.; Pathak, N. N.; Kurade, N. P.; Tandan, S. K.; Kumar, D. Topical Pluronic F-127 Gel Application Enhances Cutaneous Wound Healing in Rats. Acta Histochem. 2014, 116, 5–13. DOI: 10.1016/j.acthis.2013.04.010.
  • Nalbandian, R. M.; Henry, R. L.; Wilks, H. S. Artificial Skin. II. Pluronic F-127 Silver Nitrate or Silver Lactate Gel in the Treatment of Thermal Burns. J. Biomed. Mater. Res. 1972, 6, 583–590. DOI: 10.1002/jbm.820060610.
  • Alavi, T.; Rezvanian, M.; Ahmad, N.; Mohamad, N.; Ng, S.-F. Pluronic-F127 Composite Film Loaded with Erythromycin for Wound Application: formulation, Physicomechanical and in Vitro Evaluations. Drug Deliv. and Transl. Res. 2019, 9, 508–519. doi:10.1007/s13346-017-0450-z.
  • Díez-Pascual, A. M.; Díez-Vicente, A. L. Wound Healing Bionanocomposites Based on Castor Oil Polymeric Films Reinforced with Chitosan-Modified ZnO Nanoparticles. Biomacromolecules. 2015, 16, 2631–2644. DOI: 10.1021/acs.biomac.5b00447.
  • Huang, M. H.; Yang, M. C. Evaluation of Glucan/Poly(Vinyl Alcohol) Blend Wound Dressing Using Rat Models. Int. J. Pharm. 2008, 346, 38–46. DOI: 10.1016/j.ijpharm.2007.06.021.
  • Fernandes, R. S.; Lemos, J. A.; Branco de Barros, A. L.; Geraldo, V.; Eleto da Silva, E.; Alisaraie, L.; Ferreira Soares, D. C. Carboxylated versus Bisphosphonate SWCNT: Functionalization Effects on the Biocompatibility and in Vivo Behaviors in Tumor-Bearing Mice. J. Drug Delivery Sci. Technol. 2019, 50, 266–277. DOI: 10.1016/j.jddst.2019.01.036.
  • Mukherjee, D.; Bharath, S. Design and Characterization of Double Layered Mucoadhesive System Containing Bisphosphonate Derivative. ISRN Pharm. 2013, 2013, 604690.
  • Parsa, P.; Paydayesh, A.; Davachi, S. M. Investigating the Effect of Tetracycline Addition on Nanocomposite Hydrogels Based on Polyvinyl Alcohol and Chitosan Nanoparticles for Specific Medical Applications. Int J Biol Macromol. 2019, 121, 1061–1069. DOI: 10.1016/j.ijbiomac.2018.10.074.
  • Bi, S.; Bao, Z.; Bai, X.; Hu, S.; Cheng, X.; Chen, X. Tough Chitosan Hydrogel Based on Purified Regeneration and Alkaline Solvent as Biomaterials for Tissue Engineering Applications. Int. J. Biol. Macromol. 2017, 104, 224–231. DOI: 10.1016/j.ijbiomac.2017.06.017.
  • Orasugh, J. T.; Saha, N. R.; Rana, D.; Sarkar, G.; Mollick, M. M. R.; Chattoapadhyay, A.; Mitra, B. C.; Mondal, D.; Ghosh, S. K.; Chattopadhyay, D.; et al. Jute Cellulose Nano-Fibrils/Hydroxypropylmethylcellulose Nanocomposite: A Novel Material with Potential for Application in Packaging and Transdermal Drug Delivery System. Ind. Crops Prod. 2018, 112, 633–643. DOI: 10.1016/j.indcrop.2017.12.069.
  • Mukherjee, D.; Srinivasan, B. Design of Lab Model Mechanical Strength Test Instrument for Tensile Strength Determination of Film Formulations. J. Dent. Oro-Facial Res. 2018, 14, 18–22.
  • Lin, W. C.; Yu, D. G.; Yang, M. C. Blood Compatibility of Novel Poly(Gamma-Glutamic Acid)/Polyvinyl Alcohol Hydrogels. Colloids Surf. B Biointerf. 2006, 47, 43–49. DOI: 10.1016/j.colsurfb.2005.11.013.
  • Santos, T. C. d.; Hernández, R.; Rescignano, N.; Boff, L.; Reginatto, F. H.; Simões, C. M. O.; de Campos, A. M.; Mijangos, C. Nanocomposite Chitosan Hydrogels Based on PLGA Nanoparticles as Potential Biomedical Materials. Eur. Polym. J. 2018, 99, 456–463. DOI: 10.1016/j.eurpolymj.2017.12.039.
  • Serafim, A.; Mallet, R.; Pascaretti-Grizon, F.; Stancu, I.-C.; Chappard, D. Osteoblast-Like Cell Behavior on Porous Scaffolds Based on Poly(Styrene) Fibers. BioMed. Res. Int. 2014, 2014, 1–6. DOI: 10.1155/2014/609319.
  • Pascaretti-Grizon, F.; Mabilleau, G.; Chappard, D. Abrasion of 6 Dentifrices Measured by Vertical Scanning Interference Microscopy. J. Appl. Oral Sci. 2013, 21, 475–481. DOI: 10.1590/1679-775720130204.
  • Lv, X.; Liu, Y.; Song, S.; Tong, C.; Shi, X.; Zhao, Y.; Zhang, J.; Hou, M. Influence of Chitosan Oligosaccharide on the Gelling and Wound Healing Properties of Injectable Hydrogels Based on Carboxymethyl Chitosan/Alginate Polyelectrolyte Complexes. Carbohydr. Polym. 2019, 205, 312–321. DOI: 10.1016/j.carbpol.2018.10.067.
  • Mukherjee, D.; Azamthulla, M.; Santhosh, S.; Dath, G.; Ghosh, A.; Natholia, R.; Anbu, J.; Teja, B. V.; Muzammil, K. M. Development and Characterization of Chitosan-Based Hydrogels as Wound Dressing Materials. J. Drug Delivery Sci. Technol. 2018, 46, 498–510. DOI: 10.1016/j.jddst.2018.06.008.
  • Padhi, J. R.; Nayak, D.; Nanda, A.; Rauta, P. R.; Ashe, S.; Nayak, B. Development of Highly Biocompatible Gelatin & i-Carrageenan Based Composite Hydrogels: In Depth Physiochemical Analysis for Biomedical Applications. Carbohydr. Polym. 2016, 153, 292–301. DOI: 10.1016/j.carbpol.2016.07.098.
  • Rasool, A.; Ata, S.; Islam, A. Stimuli Responsive Biopolymer (Chitosan) Based Blend Hydrogels for Wound Healing Application. Carbohydr. Polym. 2019, 203, 423–429. DOI: 10.1016/j.carbpol.2018.09.083.
  • Silva, K. M. M. N.; de Carvalho, D. É. L.; Valente, V. M. M.; Campos Rubio, J. C.; Faria, P. E.; Silva-Caldeira, P. P. Silva-Caldeira PP, Concomitant and Controlled Release of Furazolidone and Bismuth(III) Incorporated in a Cross-Linked Sodium Alginate-Carboxymethyl Cellulose Hydrogel. Int. J. Biol. Macromol. 2019, 126, 359–366. DOI: 10.1016/j.ijbiomac.2018.12.136.
  • Park, S. H.; Shin, H. S.; Park, S. N. A Novel pH-Responsive Hydrogel Based on Carboxymethyl Cellulose/2-Hydroxyethyl Acrylate for Transdermal Delivery of Naringenin. Carbohydr. Polym. 2018, 200, 341–352. DOI: 10.1016/j.carbpol.2018.08.011.
  • Roy, J. C.; Ferri, A.; Giraud, S.; Jinping, G.; Salaun, F. Chitosan(-)Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. Int. J. Mol. Sci. 2018, 19, 1-19.
  • Zaid Alkilani, A.; Hamed, R.; Al-Marabeh, S.; Kamal, A.; Abu-Huwaij, R.; Hamad, I. Nanoemulsion-Based Film Formulation for Transdermal Delivery of Carvedilol. J. Drug Deliv. Sci. Technol. 2018, 46, 122–128. DOI: 10.1016/j.jddst.2018.05.015.
  • Calvo, N. L.; Svetaz, L. A.; Alvarez, V. A.; Quiroga, A. D.; Lamas, M. C.; Leonardi, D. Chitosan-Hydroxypropyl Methylcellulose Tioconazole Films: A Promising Alternative Dosage Form for the Treatment of Vaginal Candidiasis. Int. J. Pharm. 2019, 556, 181–191. DOI: 10.1016/j.ijpharm.2018.12.011.
  • Sahoo, S.,K.; Chakraborti, C.; Naik, S.; Mishra, S.,N.; Nanda, U. Structural Analysis of Ciprofloxacin-Carbopol Polymeric Composites by X-Ray Diffraction and Fourier Transform Infra-Red Spectroscopy. Trop. J. Pharm. Res. 2011, 10, 273–280. DOI: 10.4314/tjpr.v10i3.14
  • Gujarathi, N. A.; Rane, B. R.; Patel, J. K. pH Sensitive Polyelectrolyte Complex of O-Carboxymethyl Chitosan and Poly (Acrylic Acid) Cross-Linked with Calcium for Sustained Delivery of Acid Susceptible Drugs. Int. J. Pharm. 2012, 436, 418–425. DOI: 10.1016/j.ijpharm.2012.07.016.
  • Seema, D. M. Organoclay Pluronic F68 – Montmorillonite, as a Sustained Release Drug Delivery Vehicle for Propranolol Hydrochloride. Eur. Chem. Bull. 2014, 3, 593–604.
  • Wong, R. S.; Ashton, M.; Dodou, K. Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels. Pharmaceutics. 2015, 7, 305–319. DOI: 10.3390/pharmaceutics7030305.
  • Nilsen-Nygaard, J.; Strand, S. P.; Vårum, K. M.; Draget, K. I.; Nordgård, C. T. Chitosan: Gels and Interfacial Properties. Mater. Sci. 2015, 7, 552.
  • Mukherjee, D.; Srinivasan, B.; Anbu, J.; Azamthulla, M.; Banala, V. T.; Ramachandra, S. G. Improvement of Bone Microarchitecture in Methylprednisolone Induced Rat Model of Osteoporosis by Using Thiolated Chitosan-Based Risedronate Mucoadhesive Film. Drug Dev. Ind. Pharm. 2018, 44, 1845–1856. DOI: 10.1080/03639045.2018.1503297.
  • Notario-Pérez, F.; Martín-Illana, A.; Cazorla-Luna, R.; Ruiz-Caro, R.; Bedoya, L.-M.; Tamayo, A. Influence of Chitosan Swelling Behaviour on Controlled Release of Tenofovir from Mucoadhesive Vaginal Systems for Prevention of Sexual Transmission of HIV. Mar. Drugs. 2017, 15, 50. DOI: 10.3390/md15020050.
  • Bhat, P. A.; Chat, O. A.; Zhang, Y.; Dar, A. A. An Unprecedented Dual Responsive Gelation of Carbopol Induced by Pluronic P123 Triblock Copolymer. Polymer. 2016, 102, 153–166. DOI: 10.1016/j.polymer.2016.09.013.
  • Moustafine, R. I.; Viktorova, A. S.; Khutoryanskiy, V. V. Interpolymer Complexes of Carbopol® 971 and Poly(2-Ethyl-2-Oxazoline): Physicochemical Studies of Complexation and Formulations for Oral Drug Delivery. Int. J. Pharm. 2019, 558, 53–62. DOI: 10.1016/j.ijpharm.2019.01.002.
  • Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M. S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. Silver Nanoparticle Impregnated chitosan-PEG Hydrogel Enhances Wound Healing in Diabetes Induced Rabbits. Int. J. Pharm. 2019, 559, 23–36. DOI: 10.1016/j.ijpharm.2019.01.019.
  • Khorasani, M. T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H.; MansooriMoghadam, Z. Incorporation of ZnO Nanoparticles into Heparinised Polyvinyl Alcohol/Chitosan Hydrogels for Wound Dressing Application. Int. J. Biol. Macromol. 2018, 114, 1203–1215. DOI: 10.1016/j.ijbiomac.2018.04.010.
  • Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Properties of Wheat Starch Film-Forming Dispersions and Films as Affected by Chitosan Addition. J. Food Eng. 2013, 114, 303–312. DOI: 10.1016/j.jfoodeng.2012.08.005.
  • Singh, T. P.; Chatli, M. K.; Sahoo, J. Development of Chitosan Based Edible Films: process Optimization Using Response Surface Methodology. J. Food Sci. Technol. 2015, 52, 2530–2543. DOI: 10.1007/s13197-014-1318-6.
  • Talebi, A.; Labbaf, S.; Karimzadeh, F. A Conductive Film of Chitosan-Polycaprolcatone-Polypyrrole with Potential in Heart Patch Application. Polym. Test. 2019, 75, 254–261. DOI: 10.1016/j.polymertesting.2019.02.029.
  • Giusto, G.; Vercelli, C.; Comino, F.; Caramello, V.; Tursi, M.; Gandini, M. A New, Easy-to-Make Pectin-Honey Hydrogel Enhances Wound Healing in Rats. BMC Complement. Altern. Med. 2017, 17, 266. DOI: 10.1186/s12906-017-1769-1.
  • Mukherjee, D.; Srinivasan, B.; Anbu, J.; Azamthulla, M.; Teja, B. V.; Ramachandra, S.G.; N, K.; Lakkawar, A. Pamidronate Functionalized Mucoadhesive Compact for Treatment of Osteoporosis-in Vitro and in Vivo Characterization. J. Drug Deliv. Sci. Technol. 2019, 52, 915–926. DOI: 10.1016/j.jddst.2019.06.001.
  • Santhosh, S.; Mukherjee, D.; Anbu, J.; Murahari, M.; Teja, B. V. Improved Treatment Efficacy of Risedronate Functionalized Chitosan Nanoparticles in Osteoporosis: Formulation Development, In Vivo, and Molecular Modelling Studies. J. Microencapsulation. 2019, 36, 338–355. DOI: 10.1080/02652048.2019.1631401.
  • Kamnoore, D.; Mukherjee, D.; Bhagyashree, K.; Kumar, S.; Damodar, D.; Parsuraman, N. P. Nanocomposite Hybrid Polymeric Scaffold for Skin Tissue Engineering. Conf. Drug Des. Discov. Technol. 2020, 195–201.
  • Basu, P.; Narendrakumar, U.; Arunachalam, R.; Devi, S.; Manjubala, I. Characterization and Evaluation of Carboxymethyl Cellulose-Based Films for Healing of Full-Thickness Wounds in Normal and Diabetic Rats. ACS Omega. 2018, 3, 12622–12632. DOI: 10.1021/acsomega.8b02015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.