277
Views
2
CrossRef citations to date
0
Altmetric
Articles

Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery

, , , , , , ORCID Icon, & ORCID Icon show all
Pages 554-573 | Received 18 Oct 2019, Accepted 05 Mar 2020, Published online: 19 Mar 2020

References

  • Keles, E.; Song, Y.; Du, D.; Dong, W.-J.; Lin, Y. Recent Progress in Nanomaterials for Gene Delivery Applications. Biomater. Sci. 2016, 4, 1291–1309. DOI: 10.1039/C6BM00441E.
  • Sung, Y. K.; Kim, S. W. Recent Advances in the Development of Gene Delivery Systems. Biomater. Res. 2019, 23, 8. DOI: 10.1186/s40824-019-0156-z.
  • Kandil, R.; Merkel, O. M. Recent Progress of Polymeric Nanogels for Gene Delivery. Curr. Opin. Coll. Interface Sci. 2019, 39, 11–23. DOI: 10.1016/j.cocis.2019.01.005.
  • Yang, J.; Li, Q.; Yang, X.; Feng, Y.; Ren, X.; Shi, C.; Zhang, W. Multitargeting Gene Delivery Systems for Enhancing the Transfection of Endothelial Cells. Macromol. Rapid Commun. 2016, 37, 1926–1931. DOI: 10.1002/marc.201600345.
  • Yang, J.; Feng, Y.; Zhang, L. Biodegradable Carrier/Gene Complexes to Mediate the Transfection and Proliferation of Human Vascular Endothelial Cells. Polym. Adv. Technol. 2015, 26, 1370–1377. DOI: 10.1002/pat.3636.
  • Zhang, Q.; Gao, B.; Muhammad, K.; Zhang, X.; Ren, X.; Guo, J.; Xia, S.; Zhang, W.; Feng, Y. Multifunctional Gene Delivery Systems with Targeting Ligand CAGW and Charge Reversal Function for Enhanced Angiogenesis. J. Mater. Chem. B 2019, 7, 1906–1919. DOI: 10.1039/C8TB03085E.
  • Gao, B.; Zhang, Q.; Muhammad, K.; Ren, X.; Guo, J.; Xia, S.; Zhang, W.; Feng, Y. A Progressively Targeted Gene Delivery System with a pH Triggered Surface Charge-Switching Ability to Drive Angiogenesis in Vivo. Biomater. Sci. 2019, 7, 2061–2075. DOI: 10.1039/C9BM00132H.
  • Olden, B. R.; Cheng, Y.; Yu, J. L.; Pun, S. H. Cationic Polymers for Non-Viral Gene Delivery to Human T Cells. J. Control. Rel. 2018, 282, 140–147. DOI: 10.1016/j.jconrel.2018.02.043.
  • Sun, Y.; Yang, Z.; Wang, C.; Yang, T.; Cai, C.; Zhao, X.; Yang, L.; Ding, P. Exploring the Role of Peptides in Polymer-Based Gene Delivery. Acta Biomater. 2017, 60, 23–37. DOI: 10.1016/j.actbio.2017.07.043.
  • Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-Viral Vectors for Gene-Based Therapy. Nat. Rev. Genet. 2014, 15, 541–555. DOI: 10.1038/nrg3763.
  • Hwang, H. S.; Kang, H. C.; Bae, Y. H. Bioreducible Polymers as a Determining Factor for Polyplex Decomplexation Rate and Transfection. Biomacromolecules 2013, 14, 548–556. DOI: 10.1021/bm301794d.
  • Hardee, C. L.; Arévalo-Soliz, L.; Hornstein, B.; Zechiedrich, L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes 2017, 8, 65. DOI: 10.3390/genes8020065.
  • Namvar, A.; Bolhassani, A.; Khairkhah, N.; Motevalli, F. Physicochemical Properties of Polymers: An Important System to Overcome the Cell Barriers in Gene Transfection. Biopolymers 2015, 103, 363–375. DOI: 10.1002/bip.22638.
  • Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and Development of Polymers for Gene Delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593. DOI: 10.1038/nrd1775.
  • Sizovs, A.; McLendon, P. M.; Srinivasachari, S.; Reineke, T. M. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery. In Nucleic Acid Transfection. Topics in Current Chemistry, Bielke, W., Erbacher C., Eds.; Springer: Heidelberg, Germany, 2010; pp 131–190.
  • Ni, R.; Feng, R.; Chau, Y. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers. Life 2019, 9, 59. DOI: 10.3390/life9030059.
  • Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine. Proc. Natl. Acad. Sci. 1995, 92, 7297–7301. DOI: 10.1073/pnas.92.16.7297.
  • Brissault, B.; Kichler, A.; Guis, C.; Leborgne, C.; Danos, O.; Cheradame, H. Synthesis of Linear Polyethylenimine Derivatives for DNA Transfection. Bioconjugate Chem. 2003, 14, 581–587. DOI: 10.1021/bc0200529.
  • Kabanov, A. V.; Astafyeva, I. V.; Chikindas, M. L.; Rosenblat, G. F.; Kiselev, V. I.; Severin, E. S.; Kabanov, V. A. DNA Interpolyelectrolyte Complexes as a Tool for Efficient Cell Transformation. Biopolymers 1991, 31, 1437–1443. DOI: 10.1002/bip.360311210.
  • Pathak, A.; Aggarwal, A.; Kurupati, R. K.; Patnaik, S.; Swami, A.; Singh, Y.; Kumar, P.; Vyas, S. P.; Gupta, K. C. Engineered Polyallylamine Nanoparticles for Efficient in Vitro Transfection. Pharm. Res. 2007, 24, 1427–1440. DOI: 10.1007/s11095-007-9259-7.
  • Ramamoorth, M.; Narvekar, A. Non Viral Vectors in Gene Therapy - An Overview. J. Clin. Diagn. Res. 2015, 9, GE01–GE06.
  • Zakeri, A.; Kouhbanani, M. A. J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S. M.; Hashemi, S. A. R.; Zade, A. K.; Amani, A. M.; Savardashtaki, A.; Mirzaei, E.; et al. Polyethylenimine-Based Nanocarriers in Co-Delivery of Drug and Gene: A Developing Horizon. Nano Rev. Exp. 2018, 9, 1488497. DOI: 10.1080/20022727.2018.1488497.
  • Neu, M.; Fischer, D.; Kissel, T. Recent Advances in Rational Gene Transfer Vector Design Based on Poly (Ethylene Imine) and its Derivatives. J. Gene Med. 2005, 7, 992–1009. DOI: 10.1002/jgm.773.
  • Hou, X.; Ganbold, T.; Baigude, H. Synthesis of Biocompatible Amino Acid-Modified Poly (Acrylic Acid) Derivatives for Intracellular Gene Delivery. International Int. J. Polym. Mater. Polym. Biomat. 2018, 67, 174–180. DOI: 10.1080/00914037.2017.1320652.
  • Yao, W.; Fu, S.; Yang, G.; Wang, J.; Wang, X.; Tang, R. Low Molecular Weight PEI-Grafted Carboxyl-Modified Soybean Protein as Gene Carriers with Reduced Cytotoxicity and Greatly Improved Transfection in Vitro. Int. J. Polym. Mater. Polym. Biomat. 2019, 68, 617–627. DOI: 10.1080/00914037.2018.1482462.
  • Rai, R.; Alwani, S.; Badea, I. Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers 2019, 11, 745. DOI: 10.3390/polym11040745.
  • Zheng, Y.; Wang, X.; Qiu, F.; Yin, L. Amphiphilic Polymer to Improve Polyplex Stability for Enhanced Transfection Efficiency. Polym. Bull. 2019, 76, 2471–2479. DOI: 10.1007/s00289-018-2506-8.
  • Mohajeri, E.; Noudeh, G. D. Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: Polyoxyethylene Sorbitan Fatty Acid Esters. E- J. Chem. 2012, 9, 2268–2274. DOI: 10.1155/2012/961739.
  • Verma, P.; Kunwar, A.; Arai, K.; Iwaoka, M.; Priyadarsini, K. I. Alkyl Chain Modulated Cytotoxicity and Antioxidant Activity of Bioinspired Amphiphilic Selenolanes. Toxicol. Res. 2016, 5, 434–445. DOI: 10.1039/C5TX00331H.
  • Filippov, S. K.; Koňák, Č.; Kopečková, P.; Starovoytova, L.; Špírková, M.; Štěpánek, P. Effect of Hydrophobic Interactions on Properties and Stability of DNA-Polyelectrolyte Complexes. Langmuir 2010, 26, 4999–5006. DOI: 10.1021/la9036716.
  • Cheng, W. P.; Thompson, C.; Ryan, S. M.; Aguirre, T.; Tetley, L.; Brayden, D. J. In Vitro and in Vivo Characterisation of a Novel Peptide Delivery System: amphiphilic Polyelectrolyte–Salmon Calcitonin Nanocomplexes. J. Control. Rel. 2010, 147, 289–297. DOI: 10.1016/j.jconrel.2010.07.128.
  • Cheng, W. P.; Gray, A. I.; Tetley, L.; Hang, T.-L. B.; Schätzlein, A. G.; Uchegbu, I. F. Polyelectrolyte Nanoparticles with High Drug Loading Enhance the Oral Uptake of Hydrophobic Compounds. Biomacromolecules 2006, 7, 1509–1520. DOI: 10.1021/bm060130l.
  • Bisht, H. S.; Manickam, D. S.; You, Y.; Oupicky, D. Temperature-Controlled Properties of DNA Complexes with Poly(Ethylenimine)-Graft-Poly(N-Isopropylacrylamide). Biomacromolecules 2006, 7, 1169–1178. DOI: 10.1021/bm0509927.
  • Hosta-Rigau, L.; Zhang, Y.; Teo, B. M.; Postma, A.; Städler, B. Cholesterol – a Biological Compound as a Building Block in Bionanotechnology. Nanoscale 2013, 5, 89–109. DOI: 10.1039/C2NR32923A.
  • Qu, X.; Omar, L.; Le, T. B. H.; Tetley, L.; Bolton, K.; Chooi, K. W.; Wang, W.; Uchegbu, I. F. Polymeric Amphiphile Branching Leads to Rare Nanodisc Shaped Planar Self-Assemblies. Langmuir 2008, 24, 9997–10004. DOI: 10.1021/la8007848.
  • Chaudhary, Z.; Ahmed, N.; Ur. Rehman, A.; Khan, G. Lipid Polymer Hybrid Carrier Systems for Cancer Targeting: A Review. Int. J. Polym. Mater. Polym. Biomat. 2018, 67, 86–100. DOI: 10.1080/00914037.2017.1300900.
  • Gu, J.; Hao, J.; Fang, X.; Sha, X. Factors Influencing the Transfection Efficiency and Cellular Uptake Mechanisms of Pluronic P123-Modified Polypropyleneimine/pDNA Polyplexes in Multidrug Resistant Breast Cancer Cells. Coll. Surf. B 2016, 140, 83–93. DOI: 10.1016/j.colsurfb.2015.12.023.
  • Kang, Z.; Meng, Q.; Liu, K. Peptide-Based Gene Delivery Vectors. J. Mater. Chem. B 2019, 7, 1824–1841. DOI: 10.1039/C8TB03124J.
  • Habault, J.; Poyet, J. L. Recent Advances in Cell Penetrating Peptide-Based Anticancer Therapies. Molecules 2019, 24, 927. DOI: 10.3390/molecules24050927.
  • Le Joncour, V.; Laakkonen, P. Seek & Destroy, Use of Targeting Peptides for Cancer Detection and Drug Delivery. Bioorg. Med. Chem. 2018, 26, 2797–2806. DOI: 10.1016/j.bmc.2017.08.052.
  • Ren, X.; Feng, Y.; Guo, J.; Wang, H.; Li, Q.; Yang, J.; Hao, X.; Lv, J.; Ma, N.; Li, W. Surface Modification and Endothelialization of Biomaterials as Potential Scaffolds for Vascular Tissue Engineering Applications. Chem. Soc. Rev. 2015, 44, 5680–5742. DOI: 10.1039/C4CS00483C.
  • Yang, J.; Hao, X.; Li, Q.; Akpanyung, M.; Nejjari, A.; Neve, A. L.; Ren, X.; Guo, J.; Feng, Y.; Shi, C.; et al. CAGW Peptide- and PEG-Modified Gene Carrier for Selective Gene Delivery and Promotion of Angiogenesis in HUVECs in Vivo. ACS Appl. Mater. Interfaces 2017, 9, 4485–4497. DOI: 10.1021/acsami.6b14769.
  • You, Z.; Manickam, D. S.; Zhou, Q. H.; Oupický, D. Reducible Poly (2-Dimethylaminoethyl Methacrylate): Synthesis, Cytotoxicity, and Gene Delivery Activity. J. Control. Rel. 2007, 122, 217–225. DOI: 10.1016/j.jconrel.2007.04.020.
  • Zhu, C.; Jung, S.; Si, G.; Cheng, R.; Meng, F.; Zhu, X.; Park, T. G.; Zhong, Z. Cationic Methacrylate Copolymers Containing Primary and Tertiary Amino Side Groups: Controlled Synthesis via RAFT Polymerization, DNA Condensation, and in Vitro Gene Transfection. J. Polym. Sci. A Polym. Chem. 2010, 48, 2869–2877. DOI: 10.1002/pola.24064.
  • Verbaan, F. J.; Oussoren, C.; van Dam, I. M.; Takakura, Y.; Hashida, M.; Crommelin, D. J. A.; Hennink, W. E.; Storm, G. The Fate of Poly(2-Dimethyl Amino Ethyl)Methacrylate-Based Polyplexes after Intravenous Administration. Int. J. Pharm. 2001, 214, 99–101. DOI: 10.1016/S0378-5173(00)00642-6.
  • Qian, Y.; Zha, Y.; Feng, B.; Pang, Z.; Zhang, B.; Sun, X.; Ren, J.; Zhang, C.; Shao, X.; Zhang, Q.; et al. PEGylated Poly(2-(Dimethylamino) Ethyl Methacrylate)/DNA Polyplex Micelles Decorated with Phage-Displayed TGN Peptide for Brain-Targeted Gene Delivery. Biomaterials 2013, 34, 2117–2129. DOI: 10.1016/j.biomaterials.2012.11.050.
  • Agarwal, S.; Zhang, Y.; Maji, S.; Greiner, A. PDMAEMA Based Gene Delivery Materials. Mater. Today 2012, 15, 388–393. DOI: 10.1016/S1369-7021(12)70165-7.
  • Layman, J. M.; Ramirez, S. M.; Green, M. D.; Long, T. E. Influence of Polycation Molecular Weight on Poly (2-Dimethylaminoethyl Methacrylate)-Mediated DNA Delivery in Vitro. Biomacromolecules 2009, 10, 1244–1252. DOI: 10.1021/bm9000124.
  • Schallon, A.; Jérôme, V.; Walther, A.; Synatschke, C. V.; Müller, A. H. E.; Freitag, R. Performance of Three PDMAEMA-Based Polycation Architectures as Gene Delivery Agents in Comparison to Linear and Branched PEI. React. Funct. Polym. 2010, 70, 1–10. DOI: 10.1016/j.reactfunctpolym.2009.09.006.
  • Samsonova, O.; Pfeiffer, C.; Hellmund, M.; Merkel, O. M.; Kissel, T. Low Molecular Weight pDMAEMA-Block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: potential Non-Viral Gene Delivery Agents? Polymers 2011, 3, 693–718. DOI: 10.3390/polym3020693.
  • Mendrek, B.; Fus, A.; Klarzyńska, K.; Sieroń, A.; Smet, M.; Kowalczuk, A.; Dworak, A. Synthesis, Characterization and Cytotoxicity of Novel Thermoresponsive Star Copolymers of N, N′-Dimethylaminoethyl Methacrylate and Hydroxyl-Bearing Oligo (Ethylene Glycol) Methacrylate. Polymers 2018, 10, 1255. DOI: 10.3390/polym10111255.
  • ÜZgüN, S.; Akdemir, O.; Hasenpusch, G.; Maucksch, C.; Golas, M. M.; Sander, B.; Stark, H.; Imker, R.; Lutz, J.-F.; Rudolph, C. Characterization of Tailor-Made Copolymers of Oligo (Ethylene Glycol) Methyl Ether Methacrylate and N, N-Dimethylaminoethyl Methacrylate as Nonviral Gene Transfer Agents: Influence of Macromolecular Structure on Gene Vector Particle Properties and Transfection Efficiency. Biomacromolecules 2009, 11, 39–50.
  • Lai, T. C.; Bae, Y.; Yoshida, T.; Kataoka, K.; Kwon, G. S. pH-Sensitive multi-PEGylated Block Copolymer as a Bioresponsive pDNA Delivery Vector. Pharm. Res. 2010, 27, 2260–2273. DOI: 10.1007/s11095-010-0092-z.
  • Almeida, A. M.; Queiroz, J. A.; Sousa, F.; Sousa, Â. Cervical Cancer and HPV Infection: Ongoing Therapeutic Research to Counteract the Action of E6 and E7 Oncoproteins. Drug Discov. Today 2019, 24, 2044–2057. DOI: 10.1016/j.drudis.2019.07.011.
  • Song, Y.; Zhang, T.; Song, X.; Zhang, L.; Zhang, C.; Xing, J.; Liang, X.-J. Polycations with Excellent Gene Transfection Ability Based on PVP-g-PDMAEMA with Random Coil and Micelle Structures as Non-Viral Gene Vectors. J. Mater. Chem. B 2015, 3, 911–918. DOI: 10.1039/C4TB01754D.
  • Wang, Y.; Hong, C. Y.; Pan, C. Y. Galactose-Based Amphiphilic Block Copolymers: Synthesis, Micellization, and Bioapplication. Biomacromolecules 2013, 14, 1444–1451. DOI: 10.1021/bm4003078.
  • Farshbaf, M.; Davaran, S.; Zarebkohan, A.; Annabi, N.; Akbarzadeh, A.; Salehi, R. Significant Role of Cationic Polymers in Drug Delivery Systems. Artif. Cell Nanomed. B. 2017, 46, 1872–1891.
  • Zhao, T.; Zhang, H.; Newland, B.; Aied, A.; Zhou, D.; Wang, W. Significance of Branching for Transfection: Synthesis of Highly Branched Degradable Functional Poly (Dimethylaminoethyl Methacrylate) by Vinyl Oligomer Combination. Angew. Chem. Int. Ed. 2014, 53, 6095–6100. DOI: 10.1002/anie.201402341.
  • Synatschke, C. V.; Schallon, A.; Jérôme, V.; Freitag, R.; Müller, A. H. E. Influence of Polymer Architecture and Molecular Weight of Poly(2-(Dimethylamino)Ethyl Methacrylate) Polycations on Transfection Efficiency and Cell Viability in Gene Delivery. Biomacromolecules 2011, 12, 4247–4255. DOI: 10.1021/bm201111d.
  • Qian, X.; Long, L.; Shi, Z.; Liu, C.; Qiu, M.; Sheng, J.; Pu, P.; Yuan, X.; Ren, Y.; Kang, C. Star-Branched Amphiphilic PLA-b-PDMAEMA Copolymers for co-Delivery of miR-21 Inhibitor and Doxorubicin to Treat Glioma. Biomaterials 2014, 35, 2322–2335. DOI: 10.1016/j.biomaterials.2013.11.039.
  • Ficen, S. Z.; Guler, Z.; Mitina, N.; Finiuk, N.; Stoika, R.; Zaichenko, A.; Ceylan, S. E. Biophysical Study of Novel Oligoelectrolyte - Based Nonviral Gene Delivery Systems for Mammalian Cells. J. Gene Med. 2013, 15, 193–204. DOI: 10.1002/jgm.2710.
  • Thomas, T. J.; Tajmir-Riahi, H.; Thomas, T. Polyamine–DNA Interactions and Development of Gene Delivery Vehicles. Amino Acids 2016, 48, 2423–2431. DOI: 10.1007/s00726-016-2246-8.
  • Trubetskoy, V. S.; Loomis, A.; Hagstrom, J. E.; Budker, V. G.; Wolff, J. A. Layer-by-Layer Deposition of Oppositely Charged Polyelectrolytes on the Surface of Condensed DNA Particles. Nucleic Acids Res. 1999, 27, 3090–3095. DOI: 10.1093/nar/27.15.3090.
  • Yang, Z.; Gao, D.; Cao, Z.; Zhang, C.; Cheng, D.; Liu, J.; Shuai, X. Drug and Gene co-Delivery Systems for Cancer Treatment. Biomater. Sci. 2015, 3, 1035–1049. DOI: 10.1039/C4BM00369A.
  • Mohan, A.; Nair, S. V.; Lakshmanan, V. K. Polymeric Nanomicelles for Cancer Theragnostics. Int. J. Polym. Mater. Polym. Biomat. 2018, 67, 119–130. DOI: 10.1080/00914037.2017.1309540.
  • Jiang, Y.; Reineke, T. M.; Lodge, T. P. Complexation of DNA with Cationic Copolymer Micelles: Effects of DNA Length and Topology. Macromolecules 2018, 51, 1150–1160. DOI: 10.1021/acs.macromol.7b02201.
  • Ahmed, V.; Kumar, J.; Kumar, M.; Chauhan, M. B.; Chauhan, N. S. Silver Nanoparticles Encapsulated Polyacrylamide Nanospheres: An Efficient DNA Binding Nanomatrix. Int. J. Polym. Mater. Polym. Biomat. 2014, 63, 476–485. DOI: 10.1080/00914037.2013.854217.
  • Zhou, Y.; Quan, G.; Wu, Q.; Zhang, X.; Niu, B.; Wu, B.; Huang, Y.; Pan, X.; Wu, C. Mesoporous Silica Nanoparticles for Drug and Gene Delivery. Acta Pharm. Sin. 2018, 8, 165–177. DOI: 10.1016/j.apsb.2018.01.007.
  • Magalhaes, M.; Figueiras, A.; Veiga, F. Smart Micelleplexes: An Overview of a Promising and Potential Nanocarrier for Alternative Therapies. In Design and Development of New Nanocarriers, Grumezescu A. M., Ed.; Elsevier & William Andrew: Norwich, NY, 2018; pp 257–291.
  • Chen, G.; Ding, L.; Wu, P.; Zhou, Y.; Sun, M.; Wang, K.; Oupicky, D. Polymeric Micelleplexes for Improved Photothermal Endosomal Escape and Delivery of siRNA. Polym. Adv. Technol. 2018, 29, 2593–2600. DOI: 10.1002/pat.4372.
  • Zaichenko, A.; Mitina, N.; Shevchuk, O.; Rayevska, K.; Lobaz, V.; Skorokhoda, T.; Stoika, R. Development of Novel Linear, Block, and Branched Oligoelectrolytes and Functionally Targeting Nanoparticles. Pure Appl. Chem. 2008, 80, 2309–2326. DOI: 10.1351/pac200880112309.
  • Finiuk, N.; Buziashvili, A.; Burlaka, O.; Zaichenko, A.; Mitina, N.; Miagkota, O.; Lobachevska, O.; Stoika, R.; Blume, Y.; Yemets, A. Investigation of Novel Oligoelectrolyte Polymer Carriers for Their Capacity of DNA Delivery into Plant Cells. Plant Cell. Tiss. Organ Cult. 2017, 131, 27–39. DOI: 10.1007/s11240-017-1259-7.
  • Finiuk, N. S.; Chaplya, A. Y.; Mitina, N. Y.; Boiko, N. M.; Lobachevska, O. V.; Miahkota, O. S.; Yemets, A. I.; Blume, Y. B.; Zaichenko, O. S.; Stoika, R. S. Genetic Transformation of Moss Ceratodon Purpureus by Means of Polycationic Carriers of DNA. Cytol. Genet. 2014, 48, 345–351. DOI: 10.3103/S0095452714060048.
  • Horak, D.; Shagotova, T.; Mitina, N.; Trchova, M.; Boiko, N.; Babic, M.; Stoika, R.; Kovarova, J.; Hevus, O.; Benes, M. J.; et al. Surface-Initiated Polymerization of 2-Hydroxyethyl Methacrylate from Heterotelechelic Oligoperoxide-Coated gamma-Fe2O3 Nanoparticles and Their Engulfment by Mammalian Cells. Chem. Mater. 2011, 23, 2637–2649. DOI: 10.1021/cm2004215.
  • Braun, D.; Cherdron, H.; Ritter, H. Polymer Synthesis: Theory and Practice: Fundamentals, Methods, Experiments; Springer: Heidelberg, Germany; 2004.
  • Ertürk, A. S.; Gürbüz, M. U.; Tülü, M.; Bozdoğan, A. E. Evaluation of Jeffamine® Core PAMAM Dendrimers for Simultaneous Removal of Divalent Heavy Metal Ions from Aqueous Solutions by Polymer Assisted Ultrafiltration. Acta Chim. Sloven. 2018, 65, 65–74. DOI: 10.17344/acsi.2017.3485.
  • Guebel, D. V.; Nudel, B. C.; Giulietti, A. M. A Simple and Rapid micro-Kjeldahl Method for Total Nitrogen Analysis. Biotechnol. Tech. 1991, 5, 427–430. DOI: 10.1007/BF00155487.
  • Mobius, D.; Miller, R. Drops and Bubbles in Interfacial Research. Studies Interface Science; Elsevier Science: Amsterdam, The Netherlands, 1997.
  • Riabtseva, A.; Mitina, N.; Grytsyna, I.; Boiko, N.; Garamus, V. M.; Stryhanyuk, H.; Stoika, R.; Zaichenko, A. Functional Micelles Formed by Branched Polymeric Surfactants: Synthesis, Characteristics, and Application as Nanoreactors and Carriers. Eur. Polym. J. 2016, 75, 406–422. DOI: 10.1016/j.eurpolymj.2016.01.006.
  • Paiuk, O.; Mitina, N.; Slouf, M.; Pavlova, E.; Finiuk, N.; Kinash, N.; Karkhut, A.; Manko, N.; Gromovoy, T.; Hevus, O.; et al. Fluorine-Containing Block/Branched Polyamphiphiles Forming Bioinspired Complexes with Biopolymers. Coll. Surf. B 2019, 174, 393–400. DOI: 10.1016/j.colsurfb.2018.11.047.
  • Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Effect of Polysorbates on Solids Wettability and Their Adsorption Properties. Coll. Interfaces 2018, 2, 26. DOI: 10.3390/colloids2030026.
  • Greenspan, P.; Mayer, E. P.; Fowler, S. D. Nile Red: A Selective Fluorescent Stain for Intracellular Lipid Droplets. J. Cell Biol. 1985, 100, 965–973. DOI: 10.1083/jcb.100.3.965.
  • Sackett, D. L.; Wolff, J. Nile Red as a Polarity-Sensitive Fluorescent Probe of Hydrophobic Protein Surfaces. Anal. Biochem. 1987, 167, 228–234. DOI: 10.1016/0003-2697(87)90157-6.
  • Zhang, X.; Ercelen, S.; Duportail, G.; Schaub, E.; Tikhonov, V.; Slita, A.; Zarubaev, V.; Babak, V.; Mély, Y. Hydrophobically Modified Low Molecular Weight Chitosans as Efficient and Nontoxic Gene Delivery Vectors. J. Gene Med. 2008, 10, 527–539. DOI: 10.1002/jgm.1167.
  • Ercelen, S.; Zhang, X.; Duportail, G.; Grandfils, C.; Desbrières, J.; Karaeva, S.; Tikhonov, V.; Mély, Y.; Babak, V. Physicochemical Properties of Low Molecular Weight Alkylated Chitosans: A New Class of Potential Nonviral Vectors for Gene Delivery. Coll. Surf. B 2006, 51, 140–148. DOI: 10.1016/j.colsurfb.2006.06.008.
  • Guler, Z.; Birol, S. Z.; Eren, T.; Ceylan, S. E. Biophysical Characterization of Quaternary Pyridinium Functionalized Polynorbornenes for DNA Complexation and Their Cellular Interactions. Biopolymers 2016, 107, e23005.
  • Yao, J. H.; Mya, K. Y.; Li, X.; Parameswaran, M.; Xu, Q. H.; Loh, K. P.; Chen, Z.-K. Light Scattering and Luminescence Studies on Self-Aggregation Behavior of Amphiphilic Copolymer Micelles. J. Phys. Chem. B 2008, 112, 749–755. DOI: 10.1021/jp076351i.
  • Olsson, U.; Soederman, O.; Guering, P. Characterization of Micellar Aggregates in Viscoelastic Surfactant Solutions. A Nuclear Magnetic Resonance and Light Scattering Study. J. Phys. Chem. 1986, 21, 5223–5232.
  • Kuo, J. Electron Microscopy: Methods and Protocols; Humana Press: New York, NY, 2014.
  • Stockert, J. C.; Horobin, R. W.; Colombo, L. L.; Blázquez-Castro, A. Tetrazolium Salts and Formazan Products in Cell Biology: Viability Assessment, Fluorescence Imaging, and Labeling Perspectives. Acta Histochem. 2018, 120, 159–167. DOI: 10.1016/j.acthis.2018.02.005.
  • Pauwels, B.; Korst, A. E.; de Pooter, C. M.; Pattyn, G. G.; Lambrechts, H. A.; Baay, M. F.; Lardon, F.; Vermorken, J. B. Comparison of the Sulforhodamine B Assay and the Clonogenic Assay for in Vitro Chemoradiation Studies. Cancer Chemother. Pharmacol. 2003, 51, 221–226. DOI: 10.1007/s00280-002-0557-9.
  • Sanderson, J. T.; Aarts, J. M. M. J. G.; Brouwer, A.; Froese, K. L.; Denison, M. S.; Giesy, J. P. Comparison of Ah Receptor-Mediated Luciferase and ethoxyresorufin-O-Deethylase Induction in H4IIE Cells: Implications for Their Use as Bioanalytical Tools for the Detection of Polyhalogenated Aromatic Hydrocarbons. Toxicol. Appl. Pharmacol. 1996, 137, 316–325. DOI: 10.1006/taap.1996.0086.
  • Lim, D. W.; Yeom, Y. I.; Park, T. G. Poly (DMAEMA-NVP)-b-PEG-Galactose as Gene Delivery Vector for Hepatocytes. Bioconjugate Chem. 2000, 11, 688–695. DOI: 10.1021/bc000014u.
  • Quan, F.; Zhang, A.; Cheng, F.; Cui, L.; Liu, J.; Xia, Y. Biodegradable Polymeric Architectures via Reversible Deactivation Radical Polymerizations. Polymers (Basel) 2018, 10, 758. DOI: 10.3390/polym10070758.
  • Van de Wetering, P.; Schuurmans-Nieuwenbroek, N. M. E.; Van Steenbergen, M. J.; Crommelin, D. J. A.; Hennink, W. E. Copolymers of 2-(Dimethylamino) Ethyl Methacrylate with Ethoxytriethylene Glycol Methacrylate or N-Vinyl-Pyrrolidone as Gene Transfer Agents. J. Control. Rel. 2000, 64, 193–203. DOI: 10.1016/S0168-3659(99)00130-3.
  • Mintzer, M. A.; Simanek, E. E. Nonviral Vectors for Gene Delivery. Chem. Rev. 2009, 109, 259–302. DOI: 10.1021/cr800409e.
  • López-López, M.; López-Cornejo, P.; Martín, V. I.; Ostos, F. J.; Checa-Rodríguez, C.; Prados-Carvajal, R.; Lebrón, J. A.; Huertas, M.; Moyá, M. L. Importance of Hydrophobic Interactions in the Single-Chained Cationic surfactant-DNA Complexation. J. Coll. Interface Sci. 2018, 521, 197–205. DOI: 10.1016/j.jcis.2018.03.048.
  • Wang, H.; Ding, S.; Zhang, Z.; Wang, L.; You, Y. Cationic Micelle: A Promising Nanocarrier for Gene Delivery with High Transfection Efficiency. J. Gene Med. 2019, 21, e3101.
  • Borisov, O. V.; Zhulina, E. B.; Leermakers, F. A. M.; Müller, A. H. E. Self-Assembled Structures of Amphophilic Ionic Block Copolymers: Theory, Self-Consistent Field Modeling and Experiment. In Self Organized Nanostructures of Amphiphilic Block Copolymers II, Müller, A. H. E.; Borisov O., Eds.; Springer: Heidelberg, Germany, 2011; pp 57–130.
  • Das, D.; Dey, J.; Chandra, A. K.; Thapa, U.; Ismail, K. Aggregation Behavior of Sodium Dioctylsulfosuccinate in Aqueous Ethylene Glycol Medium. A Case of Hydrogen Bonding between Surfactant and Solvent and Its Manifestation in the Surface Tension Isotherm. Langmuir 2012, 28, 15762–15769. DOI: 10.1021/la302876z.
  • Owen, S. C.; Chan, D. P.; Shoichet, M. S. Polymeric Micelle Stability. Nano Today 2012, 7, 53–65. DOI: 10.1016/j.nantod.2012.01.002.
  • Asayama, S.; Nohara, A.; Negishi, Y.; Kawakami, H. Plasmid DNA Mono-Ion Complex Stabilized by Hydrogen Bond for in Vivo Diffusive Gene Delivery. Biomacromolecules 2015, 16, 1226–1231. DOI: 10.1021/acs.biomac.5b00008.
  • Kimura, T.; Iwai, S.; Moritan, T.; Nam, K.; Mutsuo, S.; Yoshizawa, H.; Okada, M.; Furuzono, T.; Fujisato, T.; Kishida, A. Preparation of Poly (Vinyl Alcohol)/DNA Hydrogels via Hydrogen Bonds Formed on Ultra-High Pressurization and Controlled Release of DNA from the Hydrogels for Gene Delivery. J. Artif. Organs 2007, 10, 104–108. DOI: 10.1007/s10047-006-0367-7.
  • Sakurai, K.; Mizu, M.; Shinkai, S. Polysaccharide−Polynucleotide Complexes. 2. Complementary Polynucleotide Mimic Behavior of the Natural Polysaccharide Schizophyllan in the Macromolecular Complex with Single-Stranded RNA and DNA. Biomacromolecules 2001, 2, 641–650. DOI: 10.1021/bm000121r.
  • Mastrobattista, E.; Hennink, W. E. Polymers for Gene Delivery: charged for Success. Nature Mater. 2012, 11, 10–12. DOI: 10.1038/nmat3209.
  • Danielsen, S.; Maurstad, G.; Stokke, B. T. DNA–Polycation Complexation and Polyplex Stability in the Presence of Competing Polyanions. Biopolymers 2005, 77, 86–97. DOI: 10.1002/bip.20170.
  • Kombrabail, M. H.; Krishnamoorthy, G. J. Fluorescence Dynamics of DNA Condensed by the Molecular Crowding Agent Poly (Ethylene Glycol). J. Fluoresc. 2005, 15, 741–747. DOI: 10.1007/s10895-005-2982-8.
  • Cheng, Y.; Yang, L. Interaction between DNA and Trimethyl-Ammonium Bromides with Different Alkyl Chain Lengths. Sci. World J. 2014, 2014, 1–9. DOI: 10.1155/2014/470324.
  • Kim, H. J.; Kwon, M. S.; Choi, J. S.; Kim, B. H.; Yoon, J. K.; Kim, K.; Park, J.-S. Synthesis and Characterization of Poly (Amino Ester) for Slow Biodegradable Gene Delivery Vector. Bioorganic Med. Chem. 2007, 15, 1708–1715. DOI: 10.1016/j.bmc.2006.12.004.
  • Kim, H. J.; Kwon, M. S.; Choi, J. S.; Kim, B. H.; Yoon, J. K.; Kim, K.; Park, J.-S. Synthesis and Characterization of Degradable Polycationic Polymers as Gene Delivery Carriers. Bull. Korean Chem. Soc. 2007, 28, 63–67.
  • Foged, C.; Brodin, B.; Frokjaer, S.; Sundblad, A. Particle Size and Surface Charge Affect Particle Uptake by Human Dendritic Cells in an in Vitro Model. Int. J. Pharm. 2005, 298, 315–322. DOI: 10.1016/j.ijpharm.2005.03.035.
  • Putnam, D.; Gentry, C. A.; Pack, D. W.; Langer, R. Polymer-Based Gene Delivery with Low Cytotoxicity by a Unique Balance of Side-Chain Termini. Proc. Natl. Acad. Sci. USA. 2001, 98, 1200–1205. DOI: 10.1073/pnas.98.3.1200.
  • Cho, K. C.; Choi, S. H.; Park, T. G. Low Molecular Weight PEI Conjugated Pluronic Copolymer: useful Additive for Enhancing Gene Transfection Efficiency. Macromol. Res. 2006, 14, 348–353. DOI: 10.1007/BF03219093.
  • Gehin, C.; Montenegro, J.; Bang, E.-K.; Cajaraville, A.; Takayama, S.; Hirose, H.; Futaki, S.; Matile, S.; Riezman, H. Dynamic Amphiphile Libraries to Screen for the “Fragrant” Delivery of siRNA into HeLa Cells and Human Primary Fibroblasts. J. Am. Chem. Soc. 2013, 135, 9295–9298. DOI: 10.1021/ja404153m.
  • Gopalakrishnan, B.; Wolff, J. siRNA and DNA Transfer to Cultured Cells. In: Macromolecular Drug Delivery. In Macromolecular Drug Delivery. Methods in Molecular Biology (Methods and Protocols), Belting, M. Ed.; Humana Press: New York, NY, 2009; pp 31–52.
  • Bae, S. H.; Che, J.-H.; Seo, J.-M.; Jeong, J.; Kim, E. T.; Lee, S. W.; Koo, K-i.; Suaning, G. J.; Lovell, N. H.; Cho, D.-I.; et al. In Vitro Biocompatibility of Various Polymer-Based Microelectrode Arrays for Retinal Prosthesis Microelectrode Arrays for Retinal Prosthesis. Invest. Ophthalmol. Vis. Sci. 2012, 53, 2653–2657. DOI: 10.1167/iovs.11-9341.
  • Gichner, T.; Mukherjee, A.; Veleminsky, J. DNA Staining with the Fluorochromes EtBr, DAPI and YOYO-1 in the Comet Assay with Tobacco Plants after Treatment with Ethyl Methanesulphonate, Hyperthermia and DNase-I. Mutat. Res. 2006, 605, 17–21. DOI: 10.1016/j.mrgentox.2006.01.005.
  • Bonasera, V.; Alberti, S.; Sacchetti, A. Protocol for High-Sensitivity/Long Linear-Range Spectrofluorimetric DNA Quantification Using Ethidium Bromide. BioTechniques 2007, 43, 173–176. DOI: 10.2144/000112500.
  • Rösler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Advanced Drug Delivery Devices via Self-Assembly of Amphiphilic Block Copolymers. Adv. Drug. Deliv. Rev. 2012, 64, 270–279. DOI: 10.1016/j.addr.2012.09.026.
  • Navarro, G.; Pan, J.; Torchilin, V. P. Micelle-like Nanoparticles as Carriers for DNA and siRNA. Mol. Pharmaceutics 2015, 12, 301–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.