1,090
Views
9
CrossRef citations to date
0
Altmetric
Articles

Synthesis, biocompatibility and gene encapsulation of poly(2-Ethyl 2-Oxazoline)-dioleoyl phosphatidylethanolamine (PEtOx-DOPE) and post-modifications with peptides and fluorescent dye coumarin

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 981-993 | Received 03 Mar 2020, Accepted 07 May 2020, Published online: 07 Jul 2020

References

  • Kopeček, J. Smart and Genetically Engineered Biomaterials and Drug Delivery Systems. Eur. J. Pharm. Sci. 2003, 20, 1–16. DOI: 10.1016/S0928-0987(03)00164-7.
  • Hoffman, A. S.; Stayton, P. S. Bioconjugates of Smart Polymers and Proteins: Synthesis and Applications. Macromol. Symp. 2004, 207, 139–152. DOI: 10.1002/masy.200450314.
  • Duncan, R. Polymer Conjugates as Anticancer Nanomedicines. Nat. Rev. Cancer 2006, 6, 688–701. DOI: 10.1038/nrc1958.
  • Hoffman, A. S. Bioconjugates of Intelligent Polymers and Recognition Proteins for Use in Diagnostics and Affinity Separations. Clin. Chem. 2000, 46, 1478–1486. DOI: 10.1093/clinchem/46.9.1478.
  • Caliceti, P.; Veronese, F. M. Pharmacokinetic and Biodistribution Properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 2003, 55, 1261–1277. DOI: 10.1016/s0169-409x(03)00108-x.
  • Rosi, N. L.; Mirkin, C. A. Nanostructures in Biodiagnostics. Chem. Rev. 2005, 105, 1547–1562. DOI: 10.1021/cr030067f.
  • Paira, T. K.; Saha, A.; Banerjee, S.; Das, T.; Das, P.; Jana, N. R.; Mandal, T. K. Fluorescent Amphiphilic PEG-Peptide-PEG Triblock Conjugate Micelles for Cell Imaging. Macromol. Biosci. 2014, 14, 929–935. DOI: 10.1002/mabi.201400083.
  • Cobo, I.; Li, M.; Sumerlin, B. S.; Perrier, S. Smart Hybrid Materials by Conjugation of Responsive Polymers to Biomacromolecules. Nat. Mater. 2015, 14, 143–159. DOI: 10.1038/nmat4106.
  • Dule, M.; Biswas, M.; Biswas, Y.; Mandal, K.; Jana, N. R.; Mandal, T. K. Cysteine-Based Amphiphilic Peptide-Polymer Conjugates via Thiol-Mediated Radical Polymerization: Synthesis, Self-Assembly, RNA Polyplexation and N-Terminus Fluorescent Labeling for Cell Imaging. Polymer 2017, 112, 125–135. DOI: 10.1016/j.polymer.2017.01.083.
  • Saka, O. M.; Öz, U. C.; Küçüktürkmen, B.; Devrim, B.; Bozkır, A. Central Composite Design for Optimization of Zoledronic Acid Loaded PLGA Nanoparticles. J. Pharm. Innov. 2020, 15, 3–14. DOI: 10.1007/s12247-018-9365-6.
  • Luxenhofer, R.; Han, Y.; Schulz, A.; Tong, J.; He, Z.; Kabanov, A. V.; Jordan, R. Poly(2-oxazoline)s as polymer therapeutics . Macromol. Rapid Commun. 2012, 33, 1613–1631. DOI: 10.1002/marc.201200354.
  • Du, S.-L.; Pan, H.; Lu, W.-Y.; Wang, J.; Wu, J.; Wang, J.-Y. Cyclic Arg-Gly-Asp Peptide-Labeled Liposomes for Targeting Drug Therapy of Hepatic Fibrosis in Rats. J. Pharmacol. Exp. Ther. 2007, 322, 560–568. DOI: 10.1124/jpet.107.122481.
  • Chen, W.; Jin, M-j.; Gao, Z-g.; Wang, L-p.; Piao, H-f. Preparation and in Vitro Evaluation of pH-Sensitive TAT Peptide Conjugated Micelles. Yao Xue Xue Bao 2011, 46, 599–604.
  • Zalipsky, S.; Hansen, C. B.; Oaks, J. M.; Allen, T. M. Evaluation of Blood Clearance Rates and Biodistribution of Poly(2-Oxazoline)-Grafted Liposomes. J. Pharm. Sci. 1996, 85, 133–137. DOI: 10.1021/js9504043.
  • Xu, H.; Zhang, W.; Li, Y.; Ye, F. F.; Yin, P. P.; Yu, X.; Hu, M. N.; Fu, Y. S.; Wang, C.; Shang, D. J.; et al. The Bifunctional Liposomes Constructed by Poly(2-Ethyl-Oxazoline)-Cholesteryl Methyl Carbonate: An Effectual Approach to Enhance Liposomal Circulation Time, pH-Sensitivity and Endosomal Escape. Pharm. Res. 2014, 31, 3038–3050. DOI: 10.1007/s11095-014-1397-0.
  • Xia, G.; et al. Synthesis of a Novel Polymeric Material Folate-Poly(2-Ethyl-2-Oxazoline)-Distearoyl Phosphatidyl Ethanolamine Tri-Block Polymer for Dual Receptor and pH-Sensitive Targeting Liposome. Chem. Pharma. Bull. 2013, 61, 390–398.
  • Cai, G.; Litt, M. H. Preparation and Characterization of Phenyl and Undecyl Oxazoline Block Copolymers. J. Polym. Sci. A Polym. Chem. 1989, 27, 3603–3618. DOI: 10.1002/pola.1989.080271105.
  • Jin, R.-H. Water Soluble Star Block Poly(Oxazoline) with Porphyrin Label: A Unique Emulsion and Its Shape Direction. J. Mater. Chem. 2004, 14, 320–327. DOI: 10.1039/b307439k.
  • Lüdtke, K.; Jordan, R.; Hommes, P.; Nuyken, O.; Naumann, C. A. Lipopolymers from New 2-Substituted-2-Oxazolines for Artificial Cell Membrane Constructs. Macromol. Biosci. 2005, 5, 384–393. DOI: 10.1002/mabi.200500004.
  • Oz, U. C.; Kucukturkmen, B.; Ozkose, U. U.; Gulyuz, S.; Bolat, Z. B.; Telci, D.; Sahin, F.; Yilmaz, O.; Bozkir, A. Design of Colloidally Stable and Non-Toxic Petox-Based Polymersomes for Cargo Molecule Encapsulation. ChemNanoMat 2019, 5, 766–775. DOI: 10.1002/cnma.201800606.
  • Alexis, C.; Charnay, C.; Lapinte, V.; Robin, J.-J. Hydrophilization by Coating of Silylated Polyoxazoline Using Sol–Gel Process. Prog. Org. Coat. 2013, 76, 519–524. DOI: 10.1016/j.porgcoat.2012.09.012.
  • Kobayashi, S.; Uyama, H.; Narita, Y.; Ishiyama, J. Novel Multifunctional Initiators for Polymerization of 2-Oxazolines. Macromolecules 1992, 25, 3232–3236. DOI: 10.1021/ma00038a031.
  • Giardi, C.; Lapinte, V.; Charnay, C.; Robin, J. J. Nonionic Polyoxazoline Surfactants Based on Renewable Source: Synthesis, Surface and Bulk Properties. React. Funct. Polym. 2009, 69, 643–649. DOI: 10.1016/j.reactfunctpolym.2009.04.008.
  • Guillerm, B.; Monge, S.; Lapinte, V.; Robin, J.-J. How to Modulate the Chemical Structure of Polyoxazolines by Appropriate Functionalization. Macromol. Rapid. Commun. 2012, 33, 1600–1612. DOI: 10.1002/marc.201200266.
  • Balazs, D. A.; Godbey, W. Liposomes for Use in Gene Delivery. J. Drug Delivery 2011, 2011, 1–326497. DOI: 10.1155/2011/326497.
  • Ropert, C. Liposomes as a Gene Delivery System. Braz. J. Med. Biol. Res. 1999, 32, 163–169. DOI: 10.1590/S0100-879X1999000200004.
  • Attar, A. Gene Therapy Techniques: Physical and Chemical Methods. Turk. Hij. Den. Biyol. Derg. 2017, 74, 103–112. DOI: 10.5505/TurkHijyen.2016.43255.
  • Shen, D.; Xie, F.; Edwards, W. B. Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA). PLoS One. 2013, 8, e68339. DOI: 10.1371/journal.pone.0068339.
  • Mathews, A. S.; Ahmed, S.; Shahin, M.; Lavasanifar, A.; Kaur, K. Peptide Modified Polymeric Micelles Specific for Breast Cancer Cells. Bioconjug. Chem. 2013, 24, 560–570. DOI: 10.1021/bc3004364.
  • Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Color Test for Detection of Free Terminal Amino Groups in the Solid-Phase Synthesis of Peptides. Anal. Biochem. 1970, 34, 595–598. DOI: 10.1016/0003-2697(70)90146-6.
  • Stolz, R. M.; Northrop, B. H. Experimental and Theoretical Studies of Selective Thiol-ene and Thiol-yne Click Reactions Involving N-Substituted Maleimides. J. Org. Chem. 2013, 78, 8105–8116. DOI: 10.1021/jo4014436.
  • Gulyuz, S.; Ozkose, U. U.; Kocak, P.; Telci, D.; Yilmaz, O.; Tasdelen, M. A. In-Vitro Cytotoxic Activities of Poly (2-Ethyl-2-Oxazoline)-Based Amphiphilic Block Copolymers Prepared by CuAAC Click Chemistry. Express Polym. Lett. 2018, 12, 146–158. DOI: 10.3144/expresspolymlett.2018.13.
  • Kara, A.; Ozturk, N.; Esendagli, G.; Ozkose, U. U.; Gulyuz, S.; Yilmaz, O.; Telci, D.; Bozkir, A.; Vural, I. Development of Novel Self-Assembled Polymeric Micelles from Partially Hydrolysed Poly(2-Ethyl-2-Oxazoline)-co-PEI-b-PCL Block Copolymer as Non-Viral Vectors for Plasmid DNA in Vitro Transfection. Artif. Cells. Nanomed. Biotechnol. 2018, 46, S264–S273. DOI: 10.1080/21691401.2018.1491478.
  • Bozkir, A.; Saka, O. M. Chitosan-DNA Nanoparticles: Effect on DNA Integrity, Bacterial Transformation and Transfection Efficiency. J. Drug Target 2004, 12, 281–288. DOI: 10.1080/10611860410001714162.
  • Soudy, R.; Gill, A.; Sprules, T.; Lavasanifar, A.; Kaur, K. Proteolytically Stable Cancer Targeting Peptides with High Affinity for Breast Cancer Cells. J. Med. Chem. 2011, 54, 7523–7534. DOI: 10.1021/jm200750x.
  • Cultrara, C. N.; Shah, S.; Antuono, G.; Heller, C. J.; Ramos, J. A.; Samuni, U.; Zilberberg, J.; Sabatino, D. Size Matters: Arginine-Derived Peptides Targeting the PSMA Receptor Can Efficiently Complex but Not Transfect siRNA. Mol. Ther. Nucleic Acids 2019, 18, 863–870. DOI: 10.1016/j.omtn.2019.10.013.
  • Feldman, B. J.; Feldman, D. The Development of Androgen-Independent Prostate Cancer. Nat. Rev. Cancer 2001, 1, 34–45. DOI: 10.1038/35094009.
  • Taplin, M.-E.; Balk, S. Androgen Receptor: A Key Molecule in the Progression of Prostate Cancer to Hormone Independence. J. Cell. Biochem. 2004, 91, 483–490. DOI: 10.1002/jcb.10653.
  • Pienta, K. J.; Bradley, D. Mechanisms Underlying the Development of Androgen-Independent Prostate Cancer. Clin. Cancer Res. 2006, 12, 1665–1671. DOI: 10.1158/1078-0432.CCR-06-0067.
  • Viale, G. The Current State of Breast Cancer Classification. Ann. Oncol. 2012, 23, x207–x210. DOI: 10.1093/annonc/mds326.
  • Surace, C.; Arpicco, S.; Dufaÿ-Wojcicki, A.; Marsaud, V.; Bouclier, C.; Clay, D.; Cattel, L.; Renoir, J.-M.; Fattal, E. Lipoplexes Targeting the CD44 Hyaluronic Acid Receptor for Efficient Transfection of Breast Cancer Cells. Mol. Pharm. 2009, 6, 1062–1073. DOI: 10.1021/mp800215d.
  • Shenoy, D.; Fu, W.; Li, J.; Crasto, C.; Jones, G.; DiMarzio, C.; Sridhar, S.; Amiji, M. Surface Functionalization of Gold Nanoparticles Using Hetero-Bifunctional Poly(Ethylene Glycol) Spacer for Intracellular Tracking and Delivery. Int. J. Nanomed. 2006, 1, 51–57. DOI: 10.2147/nano.2006.1.1.51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.