760
Views
11
CrossRef citations to date
0
Altmetric
Review

Electrospinning of ultra-thin membranes with incorporation of antimicrobial agents for applications in active packaging: a review

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1053-1076 | Received 14 Jan 2020, Accepted 17 Jun 2020, Published online: 03 Aug 2020

References

  • Liu, Y.; Hao, M.; Chen, Z.; Liu, L.; Liu, Y.; Yang, W.; Ramakrishna, S. A Review on Recent Advances in Application of Electrospun Nanofiber Materials as Biosensors. Curr. Opin. Biomed. Eng. 2020, 13, 174–189. DOI: 10.1016/j.cobme.2020.02.001.
  • Sullivan, S. T.; Tang, C.; Kennedy, A.; Talwar, S.; Khan, S. A. Electrospinning and Heat Treatment of Whey Protein Nanofibers. Food Hydrocolloids 2014, 35, 36–50. DOI: 10.1016/j.foodhyd.2013.07.023.
  • Zhang, C.; Feng, F.; Zhang, H. Emulsion Electrospinning: Fundamentals, Food Applications and Prospects. Trends Food Sci. Technol. 2018, 80, 175–186. DOI: 10.1016/j.tifs.2018.08.005.
  • Mendes, A. C.; Stephansen, K.; Chronakis, I. S. Electrospinning of Food Proteins and Polysaccharides. Food Hydrocolloids 2017, 68, 53–68. DOI: 10.1016/j.foodhyd.2016.10.022.
  • Ghorani, B.; Tucker, N. Fundamentals of Electrospinning as a Novel Delivery Vehicle for Bioactive Compounds in Food Nanotechnology. Food Hydrocolloids 2015, 51, 227–240. DOI: 10.1016/j.foodhyd.2015.05.024.
  • Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and Electrospraying Techniques: Potential Food Based Applications. Trends in Food Science and Technology 2014, 38, 21–33. DOI: 10.1016/j.tifs.2014.03.004.
  • Wen, P.; Zong, M. H.; Linhardt, R. J.; Feng, K.; Wu, H. Electrospinning: A Novel Nano-Encapsulation Approach for Bioactive Compounds. Trends in Food Science and Technology 2017, 70, 56–68. DOI: 10.1016/j.tifs.2017.10.009.
  • Soares, R. M. D.; Siqueira, N. M.; Prabhakaram, M. P.; Ramakrishna, S. Electrospinning and Electrospray of Bio-Based and Natural Polymers for Biomaterials Development. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 969–982. DOI: 10.1016/j.msec.2018.08.004.
  • Mascheroni, E.; Fuenmayor, C. A.; Cosio, M. S.; Di Silvestro, G.; Piergiovanni, L.; Mannino, S.; Schiraldi, A. Encapsulation of Volatiles in Nanofibrous Polysaccharide Membranes for Humidity-Triggered Release. Carbohydr. Polym. 2013, 98, 17–25. DOI: 10.1016/j.carbpol.2013.04.068.
  • Ferro, S.; Amorico, T.; Deo, P. Role of Food Sanitising Treatments in Inducing the ‘Viable but Nonculturable’ State of Microorganisms. Food Control. 2018, 91, 321–329. DOI: 10.1016/j.foodcont.2018.04.016.
  • Otoni, C. G.; Espitia, P. J. P.; Avena-Bustillos, R. J.; McHugh, T. H. Trends in Antimicrobial Food Packaging Systems: Emitting Sachets and Absorbent Pads. Food Res. Int. 2016, 83, 60–73. DOI: 10.1016/j.foodres.2016.02.018.
  • Majid, I.; Ahmad Nayik, G.; Mohammad Dar, S.; Nanda, V. Novel Food Packaging Technologies: Innovations and Future Prospective. J. Saudi Soc. Agric. Sci. 2018, 17, 454–462. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1658077X16300765. DOI: 10.1016/j.jssas.2016.11.003.
  • Homaeigohar, S.; Boccaccini, A. R. Antibacterial Biohybrid Nanofibers for Wound Dressings. Acta Biomater. 2020, 107, 25–49. DOI: 10.1016/j.actbio.2020.02.022.
  • Sabra, S.; Ragab, D. M.; Agwa, M. M.; Rohani, S. Recent Advances in Electrospun Nanofibers for Some Biomedical Applications. Eur. J. Pharm. Sci. 2020, 144, 105224. DOI: 10.1016/j.ejps.2020.105224.
  • Santos, J. C. P.; Sousa, R. C. S.; Otoni, C. G.; Moraes, A. R. F.; Souza, V. G. L.; Medeiros, E. A. A.; Espitia, P. J. P.; Pires, A. C. S.; Coimbra, J. S. R.; Soares, N. F. F.; et al. Nisin and Other Antimicrobial Peptides: Production, Mechanisms of Action, and Application in Active Food Packaging. Innovative Food Sci. Emerg. Technol. 2018, 48, 179–194. DOI: 10.1016/j.ifset.2018.06.008.
  • Rojas-Mercado, A. S.; Moreno-Cortez, I. E.; Lucio-Porto, R.; Pavón, L. L. Encapsulation and Immobilization of Ficin Extract in Electrospun Polymeric Nanofibers. Int. J. Biol. Macromol. 2018, 118, 2287–2295. DOI: 10.1016/j.ijbiomac.2018.07.113.
  • Beachley, V.; Wen, X. Polymer Nanofibrous Structures: Fabrication, Biofunctionalization, and Cell Interactions. Prog. Polym. Sci. 2010, 35, 868–892. DOI: 10.1016/j.progpolymsci.2010.03.003.
  • Senthil Muthu Kumar, T.; Senthil Kumar, K.; Rajini, N.; Siengchin, S.; Ayrilmis, N.; Varada Rajulu, A. A. Comprehensive Review of Electrospun Nanofibers: Food and Packaging Perspective. Compos. B Eng. 2019, 175, 107074. DOI: 10.1016/j.compositesb.2019.107074.
  • Tian, J.; Deng, H.; Huang, M.; Liu, R.; Yi, Y.; Dong, X. Electrospun Nanofibers for Food and Food Packaging Technology. In Electrospinning: Nanofabrication and Applications; Ding, B., Wang, X., & Yu, J., Eds.; Elsevier Inc.: Amsterdam, 2019; pp 455–516. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323512701000157.
  • Moreira, J. B.; Morais, M. D.; Morais, E. D.; Vaz, S.; Alberto, J.; Costa, V. Electrospun Polymeric Nanofibers in Food Packaging. In Impact of Nanoscience in the Food Industry; Grumezescu, A. M., Holban, A. M., Eds.; Elsevier Inc.: Amsterdam, 2018; pp 387–417.
  • Schmatz, D. A.; da Silva Uebel, L.; Kuntzler, S. G.; Dora, C. L.; Costa, J. A. V.; de Morais, M. G. Scaffolds Containing Spirulina sp. LEB 18 Biomass: Development, Characterization and Evaluation of In Vitro Biodegradation. J. Nanosci. Nanotechnol. 2016, 16, 1050–1059. DOI: 10.1166/jnn.2016.12331.
  • Xiao, Q.; Lim, L. T. Pullulan-Alginate Fibers Produced Using Free Surface Electrospinning. Int. J. Biol. Macromol. 2018, 112, 809–817. DOI: 10.1016/j.ijbiomac.2018.02.005.
  • Zhai, X.; Lin, D.; Liu, D.; Yang, X. Emulsions Stabilized by Nanofibers from Bacterial Cellulose: New Potential Food-Grade Pickering Emulsions. Food Res. Int. 2018, 103, 12–20. DOI: 10.1016/j.foodres.2017.10.030.
  • Dickinson, E. Biopolymer-Based Particles as Stabilizing Agents for Emulsions and Foams. Food Hydrocolloids 2017, 68, 219–231. DOI: 10.1016/j.foodhyd.2016.06.024.
  • Cruz-Morfin, R.; Martínez-Tenorio, R.; López-Malo, A. Biopolímeros y su Integración Con Polímeros Convencionales Como Alternativa de Empaque de Alimentos. Temas de Selección de Ingeniería de Alimentos 2013, 7, 42–52. Available from: web.udlap.mx/tsia/files/2014/12/TSIA-72-Cruz-Morfin-et-al-2013.pdf%0Ahttp://web.udlap.mx/tsia/files/2014/12/TSIA-72-Cruz-Morfin-et-al-2013.pdf.
  • Fu, Y.; Sarkar, P.; Bhunia, A. K.; Yao, Y. Delivery Systems of Antimicrobial Compounds to Food. Trends Food Sci. Technol. 2016, 57, 165–177. DOI: 10.1016/j.tifs.2016.09.013.
  • Kriegel, C.; Arecchi, A.; Arrechi, A.; Kit, K.; McClements, D. J.; Weiss, J. Fabrication, Functionalization, and Application of Electrospun Biopolymer Nanofibers. Crit. Rev. Food Sci. Nutr. 2008, 48, 775–797. DOI: 10.1080/10408390802241325.
  • Khan, M. A.; Yue, C.; Fang, Z.; Hu, S.; Cheng, H.; Bakry, A. M.; Liang, L. Alginate/Chitosan-Coated Zein Nanoparticles for the Delivery of Resveratrol. J. Food Eng. 2019, 258, 45–53. DOI: 10.1016/j.jfoodeng.2019.04.010.
  • Aguilar-Vázquez, G.; Loarca-Piña, G.; Figueroa-Cárdenas, J. D.; Mendoza, S. Electrospun Fibers from Blends of Pea (Pisum sativum) Protein and Pullulan. Food Hydrocolloids 2018, 83, 173–181. DOI: 10.1016/j.foodhyd.2018.04.051.
  • Aceituno-Medina, M.; Mendoza, S.; Lagaron, J. M.; López-Rubio, A. Development and Characterization of Food-Grade Electrospun Fibers from Amaranth Protein and Pullulan Blends. Food Res. Int. 2013, 54, 667–674. DOI: 10.1016/j.foodres.2013.07.055.
  • Blanco-Padilla, A.; López-Rubio, A.; Loarca-Piña, G.; Gómez-Mascaraque, L. G.; Mendoza, S. Characterization, Release and Antioxidant Activity of Curcumin-Loaded Amaranth-Pullulan Electrospun Fibers. LWT 2015, 63, 1137–1144. DOI: 10.1016/j.lwt.2015.03.081.
  • Shao, P.; Niu, B.; Chen, H.; Sun, P. Fabrication and Characterization of Tea Polyphenols Loaded Pullulan-CMC Electrospun Nanofiber for Fruit Preservation. Int. J. Biol. Macromol. 2018, 107, 1908–1914.. DOI: 10.1016/j.ijbiomac.2017.10.054.
  • Qin, Z.-Y.; Jia, X.-W.; Liu, Q.; Kong, B.-H.; Wang, H. Fast Dissolving Oral Films for Drug Delivery Prepared from Chitosan/Pullulan Electrospinning Nanofibers. Int. J. Biol. Macromol. 2019, 137, 224–231. DOI: 10.1016/j.ijbiomac.2019.06.224.
  • Göttel, B.; de Souza E Silva, J. M.; Santos de Oliveira, C.; Syrowatka, F.; Fiorentzis, M.; Viestenz, A.; Viestenz, A.; Mäder, K. Electrospun Nanofibers – A Promising Solid In-Situ Gelling Alternative for Ocular Drug Delivery. Eur. J. Pharm. Biopharm. 2020, 146, 125–132. DOI: 10.1016/j.ejpb.2019.11.012.
  • Materon, L. A.; Weng, B.; Lozano, K.; Xu, F.; Gilkerson, R. Development of Tannic Acid/Chitosan/Pullulan Composite Nanofibers from Aqueous Solution for Potential Applications as Wound Dressing. Carbohydr. Polym. 2015, 115, 16–24. DOI: 10.1016/j.carbpol.2014.08.081.
  • Na, K.; Shin, D.; Yun, K.; Park, K. H.; Lee, K. C. Conjugation of Heparin into Carboxylated Pullulan Derivatives as an Extracellular Matrix for Endothelial Cell Culture. Biotechnol. Lett. 2003, 25, 381–385. DOI: 10.1023/a:1022442129375.
  • Trinetta, V.; Cutter, C. N.; Pullulan, A. Suitable Biopolymer for Antimicrobial Food Packaging Applications. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Elsevier Inc.: Amsterdam, 2016; pp 385–397. DOI: 10.1016/B978-0-12-800723-5.00030-9.
  • Malgarim Cordenonsi, L.; Faccendini, A.; Rossi, S.; Bonferoni, M. C.; Malavasi, L.; Raffin, R.; Scherman Schapoval, E. E.; Del Fante, C.; Vigani, B.; Miele, D.; et al. Platelet Lysate Loaded Electrospun Scaffolds: Effect of Nanofiber Types on Wound Healing. Eur. J. Pharm. Biopharm. 2019, 142, 247–257. DOI: 10.1016/j.ejpb.2019.06.030.
  • Grip, J.; Engstad, R. E.; Skjaeveland, I.; Škalko-Basnet, N.; Isaksson, J.; Basnet, P.; Holsaeter, A. M. Beta-Glucan-Loaded Nanofiber Dressing Improves Wound Healing in Diabetic Mice. Eur. J. Pharm. Sci. 2018, 121, 269–280. DOI: 10.1016/j.ejps.2018.05.031.
  • Jayachandran, M.; Chen, J.; Chung, S. S. M.; Xu, B. A Critical Review on the Impacts of β-Glucans on Gut Microbiota and Human Health. J. Nutr. Biochem. 2018, 61, 101–110.. DOI: 10.1016/j.jnutbio.2018.06.010.
  • Wang, W.; Jin, X.; Zhu, Y.; Zhu, C.; Yang, J.; Wang, H.; Lin, T. Effect of Vapor-Phase Glutaraldehyde Crosslinking on Electrospun Starch Fibers. Carbohydr. Polym. 2016, 140, 356–361. DOI: 10.1016/j.carbpol.2015.12.061.
  • Kawahara, Y. (1 → 3)-β-D-Glucan Nanofibers from Paramylon via Electrospinning. Carbohydr. Polym. 2014, 112, 73–76. DOI: 10.1016/j.carbpol.2014.05.066.
  • Zhang, L.-L.; Ren, J.-N.; Zhang, Y.; Li, J.-J.; Liu, Y.-L.; Guo, Z.-Y.; Yang, Z.-Y.; Pan, S.-Y.; Fan, G. Effects of Modified Starches on the Processing Properties of Heat-Resistant Blueberry Jam. LWT 2016, 72, 447–456. DOI: 10.1016/j.lwt.2016.05.018.
  • Gutiérrez-Sánchez, M.; Escobar-Barrios, V. A.; Pozos-Guillén, A.; Escobar-García, D. M. RGD-Functionalization of PLA/Starch Scaffolds Obtained by Electrospinning and Evaluated In Vitro for Potential Bone Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 798–806. DOI: 10.1016/j.msec.2018.12.003.
  • Hemamalini, T.; Giri Dev, V. R. Comprehensive Review on Electrospinning of Starch Polymer for Biomedical Applications. Int. J. Biol. Macromol. 2018, 106, 712–718. DOI: 10.1016/j.ijbiomac.2017.08.079.
  • Lancuški, A.; Vasilyev, G.; Putaux, J. L.; Zussman, E. Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid. Biomacromolecules 2015, 16, 2529–2536. DOI: 10.1021/acs.biomac.5b00817.
  • Homayoni, H.; Ravandi, S. A. H.; Valizadeh, M. Electrospinning of Chitosan Nanofibers: Processing Optimization. Carbohydr. Polym. 2009, 77, 656–661. DOI: 10.1016/j.carbpol.2009.02.008.
  • Liu, G.; Gu, Z.; Hong, Y.; Cheng, L.; Li, C. Electrospun Starch Nanofibers: Recent Advances, Challenges, and Strategies for Potential Pharmaceutical Applications. J. Control Release 2017, 252, 95–107. DOI: 10.1016/j.jconrel.2017.03.016.
  • Geng, X.; Kwon, O. H.; Jang, J. Electrospinning of Chitosan Dissolved in Concentrated Acetic Acid Solution. Biomaterials 2005, 26, 5427–5432. DOI: 10.1016/j.biomaterials.2005.01.066.
  • Abid, S.; Hussain, T.; Nazir, A.; Zahir, A.; Ramakrishna, S.; Hameed, M.; Khenoussi, N. Enhanced Antibacterial Activity of PEO-Chitosan Nanofibers with Potential Application in Burn Infection Management. Int. J. Biol. Macromol. 2019, 135, 1222–1236. DOI: 10.1016/j.ijbiomac.2019.06.022.
  • Lin, L.; Xue, L.; Duraiarasan, S.; Haiying, C. Preparation of ε-Polylysine/Chitosan Nanofibers for Food Packaging against Salmonella on Chicken. Food Packag. Shelf Life 2018, 17, 134–141. DOI: 10.1016/j.fpsl.2018.06.013.
  • K, R.; G, B.; Banat, F.; Show, P. L.; Cocoletzi, H. H. Mango Leaf Extract Incorporated Chitosan Antioxidant Film for Active Food Packaging. Int. J. Biol. Macromol. 2019, 126, 1234–1243. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813018362500. DOI: 10.1016/j.ijbiomac.2018.12.196.
  • Lemma, S. M.; Bossard, F.; Rinaudo, M. Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly(Ethylene Oxide). IJMS. 2016, 17, 1790. DOI: 10.3390/ijms17111790.
  • Koosha, M.; Raoufi, M.; Moravvej, H. One-Pot Reactive Electrospinning of Chitosan/PVA Hydrogel Nanofibers Reinforced by Halloysite Nanotubes with Enhanced Fibroblast Cell Attachment for Skin Tissue Regeneration. Colloids Surf B Biointerfaces 2019, 179, 270–279. DOI: 10.1016/j.colsurfb.2019.03.054.
  • Sasmal, P.; Datta, P. Tranexamic Acid-Loaded Chitosan Electrospun Nanofibers as Drug Delivery System for Hemorrhage Control Applications. J. Drug Deliv. Sci. Technol. 2019, 52, 559–567. DOI: 10.1016/j.jddst.2019.05.018.
  • Rengifo, A. F. C.; Stefanes, N. M.; Toigo, J.; Mendes, C.; Argenta, D. F.; Dotto, M. E. R.; Santos da Silva, M. C.; Nunes, R. J.; Caon, T.; Parize, A. L.; Minatti, E. PEO-Chitosan Nanofibers Containing Carboxymethyl-Hexanoyl Chitosan/Dodecyl Sulfate Nanoparticles Loaded with Pyrazoline for Skin Cancer Treatment. Eur. Polym. J. 2019, 119, 335–343. DOI: 10.1016/j.eurpolymj.2019.08.001.
  • Dhawane, M.; Deshpande, A.; Jain, R.; Dandekar, P. Colorimetric Point-of-Care Detection of Cholesterol Using Chitosan Nanofibers. Sens. Actuators, B Chem. 2019, 281, 72–79. DOI: 10.1016/j.snb.2018.10.060.
  • Neo, Y. P.; Swift, S.; Ray, S.; Gizdavic-Nikolaidis, M.; Jin, J.; Perera, C. O. Evaluation of Gallic Acid Loaded Zein Sub-Micron Electrospun Fibre Mats as Novel Active Packaging Materials. Food Chem. 2013, 141, 3192–3200. DOI: 10.1016/j.foodchem.2013.06.018.
  • Fathi, M.; Nasrabadi, M. N.; Varshosaz, J. Characteristics of Vitamin E-Loaded Nanofibres from Dextran. Int. J. Food Prop. 2017, 20, 2665–2674. DOI: 10.1080/10942912.2016.1247365.
  • Unnithan, A. R.; Sasikala, A. R. K.; Murugesan, P.; Gurusamy, M.; Wu, D.; Park, C. H.; Kim, C. S. Electrospun Polyurethane-Dextran Nanofiber Mats Loaded with Estradiol for Post-Menopausal Wound Dressing. Int. J. Biol. Macromol. 2015, 77, 1–8. DOI: 10.1016/j.ijbiomac.2015.02.044.
  • Innocenti Malini, R.; Lesage, J.; Toncelli, C.; Fortunato, G.; Rossi, R. M.; Spano, F. Crosslinking Dextran Electrospun Nanofibers via Borate Chemistry: Proof of Concept for Wound Patches. Eur. Polym. J. 2019, 110, 276–282. DOI: 10.1016/j.eurpolymj.2018.11.017.
  • Kayaci, F.; Uyar, T. Electrospun Zein Nanofibers Incorporating Cyclodextrins. Carbohydr. Polym. 2012, 90, 558–568. DOI: 10.1016/j.carbpol.2012.05.078.
  • de Oliveira Mori, C. L. S.; dos Passos, N. A.; Oliveira, J. E.; Mattoso, L. H. C.; Mori, F. A.; Carvalho, A. G.; de Souza Fonseca, A.; Tonoli, G. H. D. Electrospinning of Zein/Tannin Bio-Nanofibers. Ind. Crops Prod. 2014, 52, 298–304. DOI: 10.1016/j.indcrop.2013.10.047.
  • Sajkiewicz, P.; Kołbuk, D. Electrospinning of Gelatin for Tissue Engineering-Molecular Conformation as One of the Overlooked Problems. J. Biomater. Sci. Polym. Ed. 2014, 25, 2009–2022. DOI: 10.1080/09205063.2014.975392.
  • Tavassoli-Kafrani, E.; Goli, S. A. H.; Fathi, M. Fabrication and Characterization of Electrospun Gelatin Nanofibers Crosslinked with Oxidized Phenolic Compounds. Int. J. Biol. Macromol. 2017, 103, 1062–1068. DOI: 10.1016/j.ijbiomac.2017.05.152.
  • Siimon, K.; Reemann, P.; Põder, A.; Pook, M.; Kangur, T.; Kingo, K.; Jaks, V.; Mäeorg, U.; Järvekülg, M. Effect of Glucose Content on Thermally Cross-Linked Fibrous Gelatin Scaffolds for Tissue Engineering. Mater. Sci. Eng. C Mater Biol. Appl. 2014, 42, 538–545. DOI: 10.1016/j.msec.2014.05.075.
  • Morsy, R.; Hosny, M.; Reicha, F.; Elnimr, T. Developing a Potential Antibacterial Long-Term Degradable Electrospun Gelatin-Based Composites Mats for Wound Dressing Applications. React. Funct. Polym. 2017, 114, 8–12. DOI: 10.1016/j.reactfunctpolym.2017.03.001.
  • Gaydhane, M.; Choubey, P.; Sharma, C. S.; Majumdar, S. Gelatin Nanofiber Assisted Zero Order Release of Amphotericin-B: A Study with Realistic Drug Loading for Oral Formulation. Mater. Today Commun. 2020, 24, 100953. DOI: 10.1016/j.mtcomm.2020.100953.
  • İnal, M.; Mülazımoğlu, G. Production and Characterization of Bactericidal Wound Dressing Material Based on Gelatin Nanofiber. Int. J. Biol. Macromol. 2019, 137, 392–404. DOI: 10.1016/j.ijbiomac.2019.06.119.
  • Ali, M. G.; Mousa, H. M.; Blaudez, F.; Abd El-Sadek, M. S.; Mohamed, M. A.; Abdel-Jaber, G. T.; Abdal-Hay, A.; Ivanovski, S. Dual Nanofiber Scaffolds Composed of Polyurethane- Gelatin/Nylon 6- Gelatin for Bone Tissue Engineering. Colloids Surf. A Physicochem. Eng. Aspects 2020, 597, 124817. DOI: 10.1016/j.colsurfa.2020.124817.
  • Ajmal, G.; Bonde, G. V.; Mittal, P.; Khan, G.; Pandey, V. K.; Bakade, B. V.; Mishra, B. Biomimetic PCL-Gelatin Based Nanofibers Loaded with Ciprofloxacin Hydrochloride and Quercetin: A Potential Antibacterial and Anti-Oxidant Dressing Material for Accelerated Healing of a Full Thickness Wound. Int. J. Pharm. 2019, 567, 118480. DOI: 10.1016/j.ijpharm.2019.118480.
  • Jiang, Y. N.; Mo, H. Y.; Yu, D. G. Electrospun Drug-Loaded Core-Sheath PVP/Zein Nanofibers for Biphasic Drug Release. Int. J. Pharm. 2012, 438, 232–239. DOI: 10.1016/j.ijpharm.2012.08.053.
  • Neo, Y. P.; Ray, S.; Jin, J.; Gizdavic-Nikolaidis, M.; Nieuwoudt, M. K.; Liu, D.; Quek, S. Y. Encapsulation of Food Grade Antioxidant in Natural Biopolymer by Electrospinning Technique: A Physicochemical Study Based on Zein-Gallic Acid System. Food Chem. 2013, 136, 1013–1021. DOI: 10.1016/j.foodchem.2012.09.010.
  • Fuenmayor, C. A.; Cosio, M. S. Encapsulation of Antioxidant Phenolic Compounds in Zein Ultra-Thin Fibers via Electrospinning. Rev. EIA 2016, 12, 13–26.
  • Perez Espitia, P. J.; de Fátima Ferreira Soares, N.; dos Reis Coimbra, J. S.; de Andrade, N. J.; Souza Cruz, R.; Alves Medeiros, E. A. Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Compr. Rev. Food Sci. Food Saf. 2012, 11, 187–204. DOI: 10.1111/j.1541-4337.2011.00179.x.
  • Anbuchezian, R.; Ravichandran, S.; Karthick Rajan, D.; Tilivi, S.; Prabha Devi, S. Identification and Functional Characterization of Antimicrobial Peptide from the Marine Crab Dromia dehaani. Microb. Pathog. 2018, 125, 60–65. DOI: 10.1016/j.micpath.2018.08.056.
  • Hashemi, S. M. B.; Nikmaram, N.; Esteghlal, S.; Mousavi Khaneghah, A.; Niakousari, M.; Barba, F. J.; Roohinejad, S.; Koubaa, M. Efficiency of Ohmic Assisted Hydrodistillation for the Extraction of Essential Oil from Oregano (Origanum vulgare Subsp. viride) Spices. Innovative Food Sci. Emerg. Technol. 2017, 41, 172–178. DOI: 10.1016/j.ifset.2017.03.003.
  • Galvão, J. G.; Silva, V. F.; Ferreira, S. G.; França, F. R. M.; Santos, D. A.; Freitas, L. S.; Alves, P. B.; Araújo, A. A. S.; Cavalcanti, S. C. H.; Nunes, R. S.; et al. β-Cyclodextrin Inclusion Complexes Containing Citrus sinensis (L.) Osbeck Essential Oil: An Alternative to Control Aedes aegypti Larvae. Thermochimica Acta 2015, 608, 14–19. DOI: 10.1016/j.tca.2015.04.001.
  • Liu, F.; Li, X.; Wang, L.; Yan, X.; Ma, D.; Liu, Z.; Liu, X. Sesamol Incorporated Cellulose Acetate-Zein Composite Nanofiber Membrane: An Efficient Strategy to Accelerate Diabetic Wound Healing. Int. J. Biol. Macromol. 2020, 149, 627–638. DOI: 10.1016/j.ijbiomac.2020.01.277.
  • Karthikeyan, K.; Guhathakarta, S.; Rajaram, R.; Korrapati, P. S. Electrospun Zein/Eudragit Nanofibers Based Dual Drug Delivery System for the Simultaneous Delivery of Aceclofenac and Pantoprazole. Int. J. Pharm. 2012, 438, 117–122. DOI: 10.1016/j.ijpharm.2012.07.075.
  • Heydari-Majd, M.; Rezaeinia, H.; Shadan, M. R.; Ghorani, B.; Tucker, N. Enrichment of Zein Nanofibre Assemblies for Therapeutic Delivery of Barije (Ferula gummosa Boiss) Essential Oil. J. Drug Deliv. Sci. Technol. 2019, 54, 101290. DOI: 10.1016/j.jddst.2019.101290.
  • Tomasula, P. M.; Sousa, A. M. M.; Liou, S.-C.; Li, R.; Bonnaillie, L. M.; Liu, L. S. Short Communication: Electrospinning of Casein/Pullulan Blends for Food-Grade Applications 1. J. Dairy Sci. 2016, 99, 1837–1845. DOI: 10.3168/jds.2015-10374.
  • Aman, M.; Ramazani, S.; Rostami, M.; Raeisi, M.; Tabibiazar, M.; Ghorbani, M. Food Hydrocolloids Fabrication of Food-Grade Nanofibers of Whey Protein Isolate – Guar Gum Using the Electrospinning Method. Food Hydrocolloids 2019, 90, 99–104. DOI: 10.1016/j.foodhyd.2018.12.010.
  • Deng, L.; Li, Y.; Feng, F.; Zhang, H. Study on Wettability, Mechanical Property and Biocompatibility of Electrospun Gelatin/Zein Nanofibers Cross-Linked by Glucose. Food Hydrocolloids 2019, 87, 1–10. DOI: 10.1016/j.foodhyd.2018.07.042.
  • Moydeen, A. M.; Ali Padusha, M. S.; Aboelfetoh, E. F.; Al-Deyab, S. S.; El-Newehy, M. H. Fabrication of Electrospun Poly(Vinyl Alcohol)/Dextran Nanofibers via Emulsion Process as Drug Delivery System: Kinetics and in Vitro Release Study. Int. J. Biol. Macromol. 2018, 116, 1250–1259.. DOI: 10.1016/j.ijbiomac.2018.05.130.
  • Eskitoros-Togay, M.; Bulbul, Y. E.; Tort, S.; Demirtaş Korkmaz, F.; Acartürk, F.; Dilsiz, N. Fabrication of Doxycycline-Loaded Electrospun PCL/PEO Membranes for a Potential Drug Delivery System. Int. J. Pharm. 2019, 565, 83–94. DOI: 10.1016/j.ijpharm.2019.04.073.
  • Islam, M. S.; Yeum, J. H. Electrospun Pullulan/Poly(Vinyl Alcohol)/Silver Hybrid Nanofibers: Preparation and Property Characterization for Antibacterial Activity. Colloids Surf. A Physicochem. Eng. Aspects 2013, 436, 279–286. DOI: 10.1016/j.colsurfa.2013.07.001.
  • Polini, A.; Yang, F. Physicochemical Characterization of Nanofiber Composites. In Nanofiber Composites for Biomedical Applications; Ramalingam, M., Ramakrishna, S., Eds.; Elsevier Ltd: Duxford, 2017; pp. 97–115. DOI: 10.1016/B978-0-08-100173-8.00005-3.
  • Fahami, A.; Fathi, M. Development of Cress Seed Mucilage/PVA Nanofibers as a Novel Carrier for Vitamin a Delivery. Food Hydrocolloids 2018, 81, 31–38. DOI: 10.1016/j.foodhyd.2018.02.008.
  • Chauhan, D.; Gupta, P. K.; Solanki, P. R. Electrochemical Immunosensor Based on Magnetite Nanoparticles Incorporated Electrospun Polyacrylonitrile Nanofibers for Vitamin-D3 Detection. Mater. Sci. Eng. C Mater Biol. Appl. 2018, 93, 145–156. DOI: 10.1016/j.msec.2018.07.036.
  • Reksamunandar, R. P.; Edikresnha, D.; Munir, M. M.; Damayanti, S.; Khairurrijal, K. Encapsulation of β-Carotene in Poly(Vinylpyrrolidone) (PVP) by Electrospinning Technique. Proc. Eng. 2017, 170, 19–23. DOI: 10.1016/j.proeng.2017.03.004.
  • İnanç Horuz, T.; Belibağlı, K. B. Nanoencapsulation by Electrospinning to Improve Stability and Water Solubility of Carotenoids Extracted from Tomato Peels. Food Chem. 2018, 268, 86–93. DOI: 10.1016/j.foodchem.2018.06.017.
  • Wang, Z. G.; Wan, L. S.; Liu, Z. M.; Huang, X. J.; Xu, Z. K. Enzyme Immobilization on Electrospun Polymer Nanofibers: An Overview. J. Mol. Catal. B Enzym. 2009, 56, 189–195. DOI: 10.1016/j.molcatb.2008.05.005.
  • Tampau, A.; González-Martinez, C.; Chiralt, A. Carvacrol Encapsulation in Starch or PCL Based Matrices by Electrospinning. J. Food Eng. 2017, 214, 245–256. DOI: 10.1016/j.jfoodeng.2017.07.005.
  • Aydogdu, A.; Sumnu, G.; Sahin, S. Fabrication of Gallic Acid Loaded Hydroxypropyl Methylcellulose Nanofibers by Electrospinning Technique as Active Packaging Material. Carbohydr. Polym. 2019, 208, 241–250. :DOI: 10.1016/j.carbpol.2018.12.065.
  • Shekarforoush, E.; Ajalloueian, F.; Zeng, G.; Mendes, A. C.; Chronakis, I. S. Electrospun Xanthan Gum-Chitosan Nanofibers as Delivery Carrier of Hydrophobic Bioactives. Mater. Lett. 2018, 228, 322–326. DOI: 10.1016/j.matlet.2018.06.033.
  • Škrlec, K.; Zupančič, Š.; Prpar Mihevc, S.; Kocbek, P.; Kristl, J.; Berlec, A. Development of Electrospun Nanofibers That Enable High Loading and Long-Term Viability of Probiotics. Eur. J. Pharm. Biopharm. 2019, 136, 108–119. DOI: 10.1016/j.ejpb.2019.01.013.
  • Shao, Z.; Zhang, X.; Pi, Y.; Wang, X.; Jia, Z.; Zhu, J.; Dai, L.; Chen, W.; Yin, L.; Chen, H.; et al. Polycaprolactone Electrospun Mesh Conjugated with an MSC Affinity Peptide for MSC Homing In Vivo. Biomaterials 2012, 33, 3375–3387. DOI: 10.1016/j.biomaterials.2012.01.033.
  • Vashisth, P.; Raghuwanshi, N.; Srivastava, A. K.; Singh, H.; Nagar, H.; Pruthi, V. Ofloxacin Loaded Gellan/PVA nanofibers – Synthesis, Characterization and Evaluation of Their Gastroretentive/Mucoadhesive Drug Delivery Potential. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 611–619. DOI: 10.1016/j.msec.2016.10.051.
  • Bakhsheshi-Rad, H. R.; Hadisi, Z.; Hamzah, E.; Ismail, A. F.; Aziz, M.; Kashefian, M. Drug Delivery and Cytocompatibility of Ciprofloxacin Loaded Gelatin Nanofibers-Coated Mg Alloy. Mater. Lett. 2017, 207, 179–182.. DOI: 10.1016/j.matlet.2017.07.072.
  • Ranjith, R.; Balraj, S.; Ganesh, J.; John Milton, M. C. Therapeutic Agents Loaded Chitosan-Based Nanofibrous Mats as Potential Wound Dressings: A Review. Mater. Today Chem. 2019, 12, 386–395. DOI: 10.1016/j.mtchem.2019.03.008.
  • Häffner, S. M.; Malmsten, M. Accepted Manuscript Influence of Self-Assembly on the Performance of Antimicrobial Peptides. Curr. Opin. Coll. Interface Sci. 2018, 38, 56–79. Available from: https://ac.els-cdn.com/S1359029418300335/1-s2.0-S1359029418300335-main.pdf?_tid=337c7be1-7b1b-4532-b4e9-70dd7cd81157&acdnat=1538826708_6a2085ffe20e8b695790aee20dfd00da. DOI: 10.1016/j.cocis.2018.09.002.
  • Espitia, P. J. P.; Pacheco, J. J. R.; Melo, N. R.; de Soares, N.; de, F. F.; Durango, A. M. Packaging Properties and Control of Listeria monocytogenes in Bologna by Cellulosic Films Incorporated with Pediocin. Braz. J. Food Technol. 2013, 16, 226–235. DOI: 10.1590/S1981-67232013005000028.
  • González, I.; Oliver-Ortega, H.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Andreu, D. Immobilization of Antimicrobial Peptides onto Cellulose Nanopaper. Int. J. Biol. Macromol. 2017, 105, 741–748. DOI: 10.1016/j.ijbiomac.2017.07.094.
  • Wang, X.; Yue, T.; Lee, T. c. Development of Pleurocidin-Poly(Vinyl Alcohol) Electrospun Antimicrobial Nanofibers to Retain Antimicrobial Activity in Food System Application. Food Control 2015, 54, 150–157. DOI: 10.1016/j.foodcont.2015.02.001.
  • Román, J. T.; Fuenmayor, C. A.; Zuluaga Dominguez, C. M.; Clavijo-Grimaldo, D.; Acosta, M.; García-Castañeda, J. E.; Fierro-Medina, R.; Rivera-Monroy, Z. J. Pullulan Nanofibers Containing the Antimicrobial Palindromic Peptide LfcinB (21–25)Pal Obtained via Electrospinning. RSC Adv. 2019, 9, 20432–20438. DOI: 10.1039/C9RA03643A.
  • Ghaderi, M.; Mousavi, M.; Yousefi, H.; Labbafi, M. All-Cellulose Nanocomposite Film Made from Bagasse Cellulose Nanofibers for Food Packaging Application. Carbohydr. Polym. 2014, 104, 59–65. DOI: 10.1016/j.carbpol.2014.01.013.
  • Kailasa, S. K.; Park, T.-J.; Rohit, J. V.; Koduru, J. R. Antimicrobial Activity of Silver Nanoparticles. In Nanoparticles in Pharmacotherapy; Grumezescu, A. M., Ed.; Elsevier Inc.: Amsterdam, 2019; pp 461–484. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128165041000090.
  • Dehcheshmeh, M. A.; Fathi, M. Production of Core-Shell Nanofibers from Zein and Tragacanth for Encapsulation of Saffron Extract. Int. J. Biol. Macromol. 2019, 122, 272–279. DOI: 10.1016/j.ijbiomac.2018.10.176.
  • Lin, L.; Mao, X.; Sun, Y.; Rajivgandhi, G.; Cui, H. Antibacterial Properties of Nanofibers Containing Chrysanthemum Essential Oil and Their Application as Beef Packaging. Int. J. Food Microbiol. 2019, 292, 21–30. DOI: 10.1016/j.ijfoodmicro.2018.12.007.
  • Robles-García, M. Á.; Del-Toro-Sánchez, C. L.; Márquez-Ríos, E.; Barrera-Rodríguez, A.; Aguilar, J.; Aguilar, J. A.; Reynoso-Marín, F. J.; Ceja, I.; Dórame-Miranda, R.; Rodríguez-Félix, F. Nanofibers of Cellulose Bagasse from Agave tequilana Weber Var. azul by Electrospinning: preparation and Characterization. Carbohydr. Polym. 2018, 192, 69–74. DOI: 10.1016/j.carbpol.2018.03.058.
  • Aktürk, A.; Erol Taygun, M.; Karbancıoğlu Güler, F.; Goller, G.; Küçükbayrak, S. Fabrication of Antibacterial Polyvinylalcohol Nanocomposite Mats with Soluble Starch Coated Silver Nanoparticles. Colloids Surf. A Physicochem. Eng. Aspects 2019, 562, 255–262. DOI: 10.1016/j.colsurfa.2018.11.034.
  • Aadil, K. R.; Mussatto, S. I.; Jha, H. Synthesis and Characterization of Silver Nanoparticles Loaded Poly(Vinyl Alcohol)-Lignin Electrospun Nanofibers and Their Antimicrobial Activity. Int. J. Biol. Macromol. 2018, 120, 763–767. DOI: 10.1016/j.ijbiomac.2018.08.109.
  • Shao, J.; Wang, B.; Li, J.; Jansen, J. A.; Walboomers, X. F.; Yang, F. Antibacterial Effect and Wound Healing Ability of Silver Nanoparticles Incorporation into Chitosan-Based Nanofibrous Membranes. Mater. Sci. Eng. C Mater Biol. Appl. 2019, 98, 1053–1063. DOI: 10.1016/j.msec.2019.01.073.
  • Álvarez, E.; Jímenez, O. J.; Posada, C. M.; Rojano, B. a.; Gil, J. H.; Gracía, C. M. Actividad Antioxidante y Contenido Fenólico de Los Extractos Provenientes de Las Bayas de Dos Especies Del Género Vismia (Guttiferae). Revista de la Facultad de Química Farmacéutica 2008, 15, 165–172.
  • Aruchamy, K.; Mahto, A.; Nataraj, S. K. Electrospun Nanofibers, Nanocomposites and Characterization of Art: Insight on Establishing Fibers as Product. Nano-Structures and Nano-Objects 2018, 16, 45–58. DOI: 10.1016/j.nanoso.2018.03.013.
  • Zanetti, M.; Carniel, T. K.; Dalcanton, F.; dos Anjos, R. S.; Gracher Riella, H.; de Araújo, P. H. H.; de Oliveira, D.; Antônio Fiori, M. Use of Encapsulated Natural Compounds as Antimicrobial Additives in Food Packaging: A Brief Review. Trends Food Sci. Technol. 2018, 81, 51–60. DOI: 10.1016/j.tifs.2018.09.003.
  • Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M. D. C.; Nilsen-Nygaard, J.; Pettersen, M. K.; Freire, C. S. R. A Concise Guide to Active Agents for Active Food Packaging. Trends Food Sci. Technol. 2018, 80, 212–222. DOI: 10.1016/j.tifs.2018.08.006.
  • Cui, H.; Wu, J.; Li, C.; Lin, L. Improving Anti-Listeria Activity of Cheese Packaging via Nanofiber Containing Nisin-Loaded Nanoparticles. LWT 2017, 81, 233–242. DOI: 10.1016/j.lwt.2017.04.003.
  • Alehosseini, A.; Gómez-Mascaraque, L. G.; Martínez-Sanz, M.; López-Rubio, A. Electrospun Curcumin-Loaded Protein Nanofiber Mats as Active/Bioactive Coatings for Food Packaging Applications. Food Hydrocolloids 2018, 87, 758–771. DOI: 10.1016/j.foodhyd.2018.08.056.
  • Lin, L.; Zhu, Y.; Cui, H. Electrospun Thyme Essential Oil/Gelatin Nanofibers for Active Packaging against Campylobacter jejuni in Chicken. LWT 2018, 97, 711–718. DOI: 10.1016/j.lwt.2018.08.015.
  • Erbay, E. A.; (Gözü) Dağtekin, B. B.; Türe, M.; Yeşilsu, A. F.; Torres-Giner, S. Quality Improvement of Rainbow Trout Fillets by Whey Protein Isolate Coatings Containing Electrospun Poly(ε-Caprolactone) Nanofibers with Urtica dioica L. Extract during Storage. LWT 2017, 78, 340–351. DOI: 10.1016/j.lwt.2017.01.002.
  • Lin, L.; Liao, X.; Cui, H. Cold Plasma Treated Thyme Essential Oil/Silk Fibroin Nanofibers against Salmonella Typhimurium in Poultry Meat. Food Packag. Shelf Life 2019, 21, 100337. DOI: 10.1016/j.fpsl.2019.100337.
  • Mocanu, A.; Rusen, E.; Diacon, A.; Isopencu, G.; Mustățea, G.; Şomoghi, R.; Dinescu, A. Antimicrobial Properties of Polysulfone Membranes Modified with Carbon Nanofibers and Silver Nanoparticles. Mater. Chem. Phys. 2019, 223, 39–45. DOI: 10.1016/j.matchemphys.2018.10.002.
  • Lin, L.; Gu, Y.; Cui, H. Novel Electrospun Gelatin-Glycerin-ε-Poly-Lysine Nanofibers for Controlling Listeria monocytogenes on Beef. Food Packag. Shelf Life 2018, 18, 21–30. DOI: 10.1016/j.fpsl.2018.08.004.
  • Bayazidi, P.; Almasi, H.; Asl, A. K. Immobilization of Lysozyme on Bacterial Cellulose Nanofibers: Characteristics, Antimicrobial Activity and Morphological Properties. Int. J. Biol. Macromol. 2018, 107, 2544–2551. DOI: 10.1016/j.ijbiomac.2017.10.137.
  • Koshy, O.; Subramanian, L.; Thomas, S. Differential Scanning Calorimetry in Nanoscience and Nanotechnology. In Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Vol. 3; Thomas, S., Thomas, R., Zachariah, A. K., Mishra, R. K., Eds.; Elsevier Inc.: Amsterdam, 2017; pp 109–122. DOI: 10.1016/B978-0-323-46139-9.00005-0.
  • Drzeżdżon, J.; Jacewicz, D.; Sielicka, A.; Chmurzyński, L. Characterization of Polymers Based on Differential Scanning Calorimetry Based Techniques. TrAC 2019, 110, 51–56. DOI: 10.1016/j.trac.2018.10.037.
  • Hadad, S.; Goli, S. Fabrication and Characterization of Electrospun Nanofibers Using Flaxseed (Linum usitatissimum) Mucilage. Int. J. Biol. Macromol. 2018, 114, 408–414. DOI: 10.1016/j.ijbiomac.2018.03.154.
  • Pereira-da-Silva, M. D. A.; Ferri, F. 1. Scanning Electron Microscopy. In Nanocharacterization Techniques; Oliveira, O. D., Marystela, F. L. G., Leite, F. D. L., Róz, A. L. D., Eds. Elsevier Inc.: Oxford, 2017; pp 1–35. DOI: 10.1016/B978-0-323-49778-7/00001-1.
  • Philip, P.; Tomlal Jose, E.; Chacko, J. K.; Philip, K. C.; Thomas, P. C. Preparation and Characterisation of Surface Roughened PMMA Electrospun Nanofibers from PEO – PMMA Polymer Blend Nanofibers. Polym. Test. 2019, 74, 257–265. DOI: 10.1016/j.polymertesting.2019.01.009.
  • Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-Loaded Chitosan Nanofibers Prepared by Electrospinning Method for Burn Wound Healing in Animal Models. Life Sci. 2019, 229, 57–66. DOI: 10.1016/j.lfs.2019.05.028.
  • Agheb, M.; Dinari, M.; Rafienia, M.; Salehi, H. Novel Electrospun Nanofibers of Modified Gelatin-Tyrosine in Cartilage Tissue Engineering. Mater. Sci. Eng. C Mater Biol. Appl. 2017, 71, 240–251. DOI: 10.1016/j.msec.2016.10.003.
  • Bastarrachea, L.; Wong, D.; Roman, M.; Lin, Z.; Goddard, J. Active Packaging Coatings. Coatings 2015, 5, 771–791. DOI: 10.3390/coatings5040771.
  • David, B.; Williams, C. Transmission Electron Microscopy. In Membrane Characterization; Hilal, N., Ismail, A. F., Matsuura, T., Oatley-Radcliffe, D., Eds.; Elsevier: Amsterdam, 2009; pp 145–159. DOI: 10.1016/B978-0-444-63776-5.00008-5.
  • Wang, J.; Zhu, L. H.; Li, J.; Tang, H. Q. Antioxidant Activity of Polyaniline Nanofibers. Chin. Chem. Lett. 2007, 18, 1005–1008. DOI: 10.1016/j.cclet.2007.05.056.
  • Zhuang, X.; Cheng, B.; Kang, W.; Xu, X. Electrospun Chitosan/Gelatin Nanofibers Containing Silver Nanoparticles. Carbohydr. Polym. 2010, 82, 524–527. DOI: 10.1016/j.carbpol.2010.04.085.
  • Manuel, O.-G.; Ricardo, A.-H.; Tetyana, K. Procesamiento de Micro y Nanofibras de Polipirrol/Óxido de Polietileno/Nylon-6 Por la Técnica de Electrohilado**Citación Estilo Chicago Olvera-Gracia, Manuel, Jorge Ricardo Aguilar-Hernández, Tetyana Kryshtab. Procesamiento de Micro y Nanofibras de Polipi. Ingeniería, Investigación y Tecnología 2013, 14, 575–581. DOI: 10.1016/S1405-7743(13)72267-4.
  • González, A.; Ribotta, P. D.; Álvarez Igarzabal, C. I.; Barrera, G. N.; Gastelú, G. Preparation and Characterization of Soy Protein Films Reinforced with Cellulose Nanofibers Obtained from Soybean by-Products. Food Hydrocolloids 2019, 89, 758–764. DOI: 10.1016/j.foodhyd.2018.11.051.
  • de la Guardia, M.; Armenta, S. Avoiding Sample Treatments. Compr. Anal. Chem. 2011, 57, 59–86. DOI: 10.1016/B978-0-444-53709-6.00004-5.
  • Bhatt, V. Thermodynamics and Kinetics of Complex Formation. In Essentials of Coordination Chemistry; Bhatt, V., Ed.; Elsevier: Oxford, 2016; pp 111–137.
  • Sun, Z.; Li, M.; Jin, Z.; Gong, Y.; An, Q.; Tuo, X.; Guo, J. Starch-Graft-Polyacrylonitrile Nanofibers by Electrospinning. Int. J. Biol. Macromol. 2018, 120, 2552–2559. DOI: 10.1016/j.ijbiomac.2018.09.031.
  • Asmatulu, R.; Khan, W. S. Characterization of Electrospun Nanofibers. In Synthesis and Applications of Electrospun Nanofibers; Asmatulu, R., Khan, W. S., Eds.; Elsevier: Oxford, 2019; pp 257–281. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128139141000134.
  • Dutta, A. Fourier Transform Infrared Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization, Vol. 2; Thomas, S., Thomas, R., Zachariah, A. K., & Mishra, R. K., Eds.; Elsevier Inc.: Amsterdam, 2017; pp 73–93. DOI: 10.1016/B978-0-323-46140-5.00004-2.
  • Lin, L.; Gu, Y.; Cui, H. Moringa Oil/Chitosan Nanoparticles Embedded Gelatin Nanofibers for Food Packaging against Listeria monocytogenes and Staphylococcus aureus on Cheese. Food Packag. Shelf Life 2019, 19, 86–93. DOI: 10.1016/j.fpsl.2018.12.005.
  • Musa, K. H.; Abdullah, A.; Al-Haiqi, A. Determination of DPPH Free Radical Scavenging Activity: Application of Artificial Neural Networks. Food Chem. 2016, 194, 705–711. DOI: 10.1016/j.foodchem.2015.08.038.
  • Chedea, V. S.; Pop, Rm, Total Polyphenols Content and Antioxidant DPPH Assays on Biological Samples. In Polyphenols in Plants, 2nd ed.; Watson, R. R.; Elsevier Inc.: London, 2018; pp 169–183. DOI: 10.1016/B978-0-12-813768-0.00011-6.
  • Li, X.; Liu, Y.; Yu, Y.; Chen, W.; Liu, Y.; Yu, H. Nanoformulations of Quercetin and Cellulose Nanofibers as Healthcare Supplements with Sustained Antioxidant Activity. Carbohydr. Polym. 2019, 207, 160–168. DOI: 10.1016/j.carbpol.2018.11.084.
  • Mujtaba, M.; Akyuz, L.; Koc, B.; Kaya, M.; Ilk, S.; Cansaran-Duman, D.; Martinez, A. S.; Cakmak, Y. S.; Labidi, J.; Boufi, S.; et al. Novel, Multifunctional Mucilage Composite Films Incorporated with Cellulose Nanofibers. Food Hydrocolloids 2019, 89, 20–28. (August 2018):DOI: 10.1016/j.foodhyd.2018.10.021.
  • Soni, B.; Mahmoud, B.; Chang, S.; El-Giar, E. M.; Hassan, E. B. Physicochemical, Antimicrobial and Antioxidant Properties of Chitosan/TEMPO Biocomposite Packaging Films. Food Packag. Shelf Life 2018, 17, 73–79. DOI: 10.1016/j.fpsl.2018.06.001.
  • Tumini, M.; Nagel, O. G.; Althaus, R. L. Five-Assay Microbiological System for the Screening of Antibiotic Residues. Rev. Argent. Microbiol. 2019, 51, 345–353. DOI: 10.1016/j.ram.2019.01.002.
  • Amariei, G.; Kokol, V.; Vivod, V.; Boltes, K.; Letón, P.; Rosal, R. Biocompatible Antimicrobial Electrospun Nanofibers Functionalized with ε-Poly-L-Lysine. Int. J. Pharm. 2018, 553, 141–148. DOI: 10.1016/j.ijpharm.2018.10.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.