196
Views
4
CrossRef citations to date
0
Altmetric
Articles

Positively-charged electrosprayed nanoparticles based on biodegradable polymers containing amphotericin B for the treatment of leishmaniasis

, , , , & ORCID Icon
Pages 1189-1202 | Received 18 Mar 2020, Accepted 17 Jun 2020, Published online: 02 Jul 2020

References

  • World Health Organization. Report of the Consultative Meeting on Cutaneous Leishmaniasis. World Health Organization: Geneva, Switzerland, 2008.
  • Druzian, A. F.; de Souza, A. S.; de Campos, D. N.; Croda, J.; Higa, M. G.; Dorval, M. E. C.; Pompilio, M. A.; de Oliveira, P. A.; Paniago, A. M. M. Risk Factors for Death from Visceral Leishmaniasis in an Urban Area of Brazil. PLoS Negl. Trop. Dis. 2015, 9, e0003982. DOI: 10.1371/journal.pntd.0003982.
  • Steimbach, L. M.; Tonin, F. S.; Virtuoso, S.; Borba, H. H. L.; Sanches, A. C. C.; Wiens, A.; Fernandez-Llimós, F.; Pontarolo, R. Efficacy and Safety of Amphotericin B Lipid-Based Formulations-A Systematic Review and Meta-Analysis. Mycoses. 2017, 60, 146–154. DOI: 10.1111/myc.12585.
  • Yang, C.; Xue, B.; Song, W.; Kan, B.; Zhang, D.; Yu, H.; Shen, N.; Li, X.; Tang, Z.; Chen, X. Reducing the Toxicity of Amphotericin B by Encapsulation Using Methoxy poly(Ethylene Glycol)-b-Poly(l-Glutamic Acid-co-l-Phenylalanine). Biomater. Sci. 2018, 6, 2189–2196. DOI: 10.1039/C8BM00506K.
  • Jain, J. P.; Kumar, N. Development of Amphotericin B Loaded Polymersomes Based on (PEG)(3)-PLA Co-Polymers: Factors Affecting Size and In Vitro Evaluation. Eur. J. Pharm. Sci. 2010, 40, 456–465. DOI: 10.1016/j.ejps.2010.05.005.
  • Hans, M. L.; Lowman, A. M. Biodegradable Nanoparticles for Drug Delivery and Targeting. Curr. Opin. Solid State Mater. Sci. 2002, 6, 319–327. DOI: 10.1016/S1359-0286(02)00117-1.
  • Nair, L. S.; Laurencin, C. T. In Tissue Engineering I; Lee, K., Kaplan, D., Eds.; Springer: Berlin, Heidelberg, 2006; Vol. 102, pp. 47–90.
  • Park, J. H.; Oh, N. Endocytosis and Exocytosis of Nanoparticles in Mammalian Cells. IJN. 2014, 9(Supplement 1), 51–63. DOI: 10.2147/IJN.S26592.
  • Du, X.-J.; Wang, J.-L.; Iqbal, S.; Li, H.-J.; Cao, Z.-T.; Wang, Y.-C.; Du, J.-Z.; Wang, J. The Effect of Surface Charge on Oral Absorption of Polymeric Nanoparticles. Biomater. Sci. 2018, 6, 642–650. DOI: 10.1039/C7BM01096F.
  • Saei, A. A.; Yazdani, M.; Lohse, S. E.; Bakhtiary, Z.; Serpooshan, V.; Ghavami, M.; Asadian, M.; Mashaghi, S.; Dreaden, E. C.; Mashaghi, A.; Mahmoudi, M. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chem. Mater. 2017, 29, 6578–6595. DOI: 10.1021/acs.chemmater.7b01979.
  • Senthilkumar, R.; Karaman, D. Ş.; Paul, P.; Björk, E. M.; Odén, M.; Eriksson, J. E.; Rosenholm, J. M. Targeted Delivery of a Novel Anticancer Compound Anisomelic Acid Using Chitosan-Coated Porous Silica Nanorods for Enhancing the Apoptotic Effect. Biomater. Sci. 2015, 3, 103–111. DOI: 10.1039/C4BM00278D.
  • Yue, Z.-G.; Wei, W.; Lv, P.-P.; Yue, H.; Wang, L.-Y.; Su, Z.-G.; Ma, G.-H. Surface Charge Affects Cellular Uptake and Intracellular Trafficking of Chitosan-Based Nanoparticles. Biomacromolecules. 2011, 12, 2440–2446. DOI: 10.1021/bm101482r.
  • Harush-Frenkel, O.; Rozentur, E.; Benita, S.; Altschuler, Y. Surface Charge of Nanoparticles Determines Their Endocytic and Transcytotic Pathway in Polarized MDCK Cells. Biomacromolecules. 2008, 9, 435–443. DOI: 10.1021/bm700535p.
  • Chen, Y.; Gu, Q.; Yue, Z.; Crook, J. M.; Moulton, S. E.; Cook, M. J.; Wallace, G. G. Development of Drug-Loaded Polymer Microcapsules for Treatment of Epilepsy. Biomater. Sci. 2017, 5, 2159–2168. DOI: 10.1039/C7BM00623C.
  • Naqvi, S. M.; Vedicherla, S.; Gansau, J.; McIntyre, T.; Doherty, M.; Buckley, C. T. Living Cell Factories – Electrosprayed Microcapsules and Microcarriers for Minimally Invasive Delivery. Adv. Mater. Weinheim. 2016, 28, 5662–5671. DOI: 10.1002/adma.201503598.
  • Wang, M.; Zhou, Y.; Shi, D.; Chang, R.; Zhang, J.; Keidar, M.; Webster, T. J. Cold Atmospheric Plasma (CAP)-Modified and Bioactive Protein-Loaded Core-Shell Nanofibers for Bone Tissue Engineering Applications. Biomater. Sci. 2019, 7, 2430–2439. DOI: 10.1039/C8BM01284A.
  • Borah, R.; Ingavle, G. C.; Sandeman, S. R.; Kumar, A.; Mikhalovsky, S. Electrically Conductive MEH-PPV:PCL Electrospun Nanofibres for Electrical Stimulation of Rat PC12 Pheochromocytoma Cells. Biomater. Sci. 2018, 6, 2342–2359. DOI: 10.1039/C8BM00559A.
  • Jiang, H.; Wang, L.; Zhu, K. Coaxial Electrospinning for Encapsulation and Controlled Release of Fragile Water-Soluble Bioactive Agents. J. Control Rel. 2014, 193, 296–303. DOI: 10.1016/j.jconrel.2014.04.025.
  • Costa, L. M. M.; Bretas, R. E. S.; Gregorio, R. Effect of Solution Concentration on the Electrospray/Electrospinning Transition and on the Crystalline Phase of PVDF. MSA. 2010, 01, 247–252. DOI: 10.4236/msa.2010.14036.
  • Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods. 1983, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.
  • Li, Y.; Bolinger, J.; Yu, Y.; Glass, Z.; Shi, N.; Yang, L.; Wang, M.; Xu, Q. Intracellular Delivery and Biodistribution Study of CRISPR/Cas9 Ribonucleoprotein Loaded Bioreducible Lipidoid Nanoparticles. Biomater. Sci. 2019, 7, 596–606. DOI: 10.1039/C8BM00637G.
  • Souto, E. B.; Wissing, S. A.; Barbosa, C. M.; Müller, R. H. Evaluation of the Physical Stability of SLN and NLC before and after Incorporation into Hydrogel Formulations. Eur. J. Pharm. Biopharm. 2004, 58, 83–90. DOI: 10.1016/j.ejpb.2004.02.015.
  • Müller, R. H.; Schmidt, S.; Buttle, I.; Akkar, A.; Schmitt, J.; Brömer, S. SolEmuls-Novel Technology for the Formulation of I.V. Emulsions with Poorly Soluble Drugs. Int. J. Pharm. 2004, 269, 293–302. DOI: 10.1016/j.ijpharm.2003.09.019.
  • de Souza, S. O. L.; Guerra, M. C. A.; Heneine, L. G. D.; de Oliveira, C. R.; da Cunha Junior, A. S.; Fialho, S. L.; Oréfice, R. L. Biodegradable Core-Shell Electrospun Nanofibers Containing Bevacizumab to Treat Age-Related Macular Degeneration. J. Mater. Sci. Mater. Med. 2018, 29, 173. DOI: 10.1007/s10856-018-6187-5.
  • Liverani, L.; Lacina, J.; Roether, J. A.; Boccardi, E.; Killian, M. S.; Schmuki, P.; Schubert, D. W.; Boccaccini, A. R. Incorporation of Bioactive Glass Nanoparticles in Electrospun PCL/Chitosan Fibers by Using Benign Solvents. Bioact. Mater. 2018, 3, 55–63. DOI: 10.1016/j.bioactmat.2017.05.003.
  • Zidan, A. S.; Spinks, C.; Fortunak, J.; Habib, M.; Khan, M. A. Near-Infrared Investigations of Novel anti-HIV Tenofovir Liposomes. AAPS J. 2010, 12, 202–214. DOI: 10.1208/s12248-010-9177-1.
  • Hu, B.; Pan, C.; Sun, Y.; Hou, Z.; Ye, H.; Hu, B.; Zeng, X. Optimization of Fabrication Parameters to Produce Chitosan-Tripolyphosphate Nanoparticles for Delivery of Tea Catechins. J. Agric. Food Chem. 2008, 56, 7451–7458. DOI: 10.1021/jf801111c.
  • Papadimitriou, S.; Bikiaris, D.; Avgoustakis, K.; Karavas, E.; Georgarakis, M. Chitosan Nanoparticles Loaded with Dorzolamide and Pramipexole. Carbohydr. Polym. 2008, 73, 44–54. DOI: 10.1016/j.carbpol.2007.11.007.
  • Xu, Y.; Du, Y. Effect of Molecular Structure of Chitosan on Protein Delivery Properties of Chitosan Nanoparticles. Int. J. Pharm. 2003, 250, 215–226. DOI: 10.1016/S0378-5173(02)00548-3.
  • Laus, R.; Laranjeira, M. C. M.; Martins, A. O.; Fávere, V. T.; Pedrosa, R. C.; Benassi, J. C.; Geremias, R. Microesferas de quitosana reticuladas com tripolifosfato utilizadas Para remoção da acidez, ferro(III) e manganês(II) de águas contaminadas pela mineração de carvão. Quím. Nova. 2006, 29, 34–39. DOI: 10.1590/S0100-40422006000100008.
  • Souza, R. O.; Henrique de Lima, T.; Oréfice, R. L.; de Freitas Araújo, M. G.; de Lima Moura, S. A.; Magalhães, J. T.; da Silva, G. R. Amphotericin B-Loaded Poly(Lactic-co-Glycolic Acid) Nanofibers: An Alternative Therapy Scheme for Local Treatment of Vulvovaginal Candidiasis. J. Pharm. Sci. 2018, 107, 2674–2685. DOI: 10.1016/j.xphs.2018.06.017.
  • Gagoś, M.; Arczewska, M. Influence of K + and Na + Ions on the Aggregation Processes of Antibiotic Amphotericin B: Electronic Absorption and FTIR Spectroscopic Studies. J. Phys. Chem. B. 2011, 115, 3185–3192. DOI: 10.1021/jp110543g.
  • Das, S.; Suresh, P. K. Nanosuspension: A New Vehicle for the Improvement of the Delivery of Drugs to the Ocular Surface. Application to Amphotericin B. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 242–247. DOI: 10.1016/j.nano.2010.07.003.
  • Luyt, A. S.; Gasmi, S. Influence of Blending and Blend Morphology on the Thermal Properties and Crystallization Behaviour of PLA and PCL in PLA/PCL Blends. J. Mater. Sci. 2016, 51, 4670–4681. DOI: 10.1007/s10853-016-9784-z.
  • Bhattacharjee, S. DLS and Zeta Potential – What They Are and What They Are Not? J Control Release. 2016, 235, 337–351. DOI: 10.1016/j.jconrel.2016.06.017.
  • Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B Biointerf. 2010, 75, 1–18. DOI: 10.1016/j.colsurfb.2009.09.001.
  • Le, N.-T.; Myrick, J. M.; Seigle, T.; Huynh, P. T.; Krishnan, S. ´Mapping Electrospray Modes and Droplet Size Distributions for Chitosan Solutions in Unentangled and Entangled Concentration Regimes. Adv. Powder Technol. 2018, 29, 3007–3021. DOI: 10.1016/j.apt.2018.10.006.
  • Zarrabi, A.; Vossoughi, M.; Alemzadeh, I.; Chitsazi, M. R. ´Monodispersed Polymeric Nanoparticles Fabrication by Electrospray Atomization. Int. J. Polym. Mater. 2012, 61, 611–626. DOI: 10.1080/00914037.2011.610048.
  • Haider, A.; Haider, S.; Kang, I.-K. ´A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arabian J. Chem. 2018, 11, 1165–1188. DOI: 10.1016/j.arabjc.2015.11.015.
  • Kuchi, C.; Harish, G. S.; Reddy, P. S. ´Effect of Polymer Concentration, Needle Diameter and Annealing Temperature on TiO2-PVP Composite Nanofibers Synthesized by Electrospinning Technique. Ceram. Int. 2018, 44, 5266–5272. DOI: 10.1016/j.ceramint.2017.12.138.
  • Lee, H. J.; Anoop, G.; Lee, H. J.; Kim, C.; Park, J.-W.; Choi, J.; Kim, H.; Kim, Y.-J.; Lee, E.; Lee, S.-G.; et al. ´ Enhanced Thermoelectric Performance of PEDOT:PSS/PANI–CSA Polymer Multilayer Structures´. Energy Environ. Sci. 2016, 9, 2806–2811. DOI: 10.1039/C5EE03063C.
  • Zhang, M.; Yang, M.; Morimoto, T.; Tajima, N.; Ichiraku, K.; Fujita, K.; Iijima, S.; Yudasaka, M.; Okazaki, T. ´ Size-Dependent Cell Uptake of Carbon Nanotubes by Macrophages: A Comparative and Quantitative Study. Carbon. 2018, 127, 93–101. DOI: 10.1016/j.carbon.2017.10.085.
  • Ashraf, M.; Farooqi, J. A.; Javed, K. Evaluation of Macrophage Injury and Activation by Amphotericin B-Loaded Polymeric Nanoparticles. Int J Polym Mater Polym Biomater. 2018, 67, 297–306. DOI: 10.1080/00914037.2017.1323216.
  • Lunov, O.; Syrovets, T.; Loos, C.; Beil, J.; Delacher, M.; Tron, K.; Nienhaus, G. U.; Musyanovych, A.; Mailänder, V.; Landfester, K.; Simmet, T. ´ Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line ACS Nano. 2011, 5, 1657–1669. DOI: 10.1021/nn2000756.
  • Roointan, A.; Kianpour, S.; Memari, F.; Gandomani, M.; Gheibi Hayat, S. M.; Mohammadi-Samani, S. ´Poly(Lactic-co-Glycolic Acid): the Most Ardent and Flexible Candidate in Biomedicine!. Int J Polym Mater Polym Biomater. 2018, 67, 1028–1049. DOI: 10.1080/00914037.2017.1405350.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.